Как связано строение и функции костной ткани

Функции костной ткани

Как связано строение и функции костной ткани

Костная ткань обладает несколькими функциями. Прежде всего это опорная функция, обеспечивающая фиксацию внутренних орга­нов, а также связок и мышц (опорно-двигательный аппарат). За счет опорной функции кости скелет выдерживает не только вес тела, но и большие нагрузки.

Представляя собой подвижно соеди­ненные в суставах рычаги различной длины, кости обеспечивают перемещение тела в пространстве за счет сократительной деятель­ности мышц. Защитная функция костной ткани наиболее наглядно проявляется по отношению к центральной нервной системе (голов­ному и спинному мозгу) и костному мозгу, одетых сплошными костными чехлами.

Обе указанные функции костной ткани могут быть названы механическими и их реализация связана с особеннос­тями строения основных типов ткани — губчатой или трабекулярной и плотной или пластинчатой.

Так, трабекулярная костная ткань, благодаря своему губчатому строению на концах длинных костей, гасит сотрясения, передаваемые через суставы, способна изгибаться и возвращаться к начальной форме. Пластинчатая плотная кость значительно более устойчива к изгибам и скручиванию.

Помимо опорной и защитной, костная ткань выполняет в организме и дру­гие функции: резервуарно-депонирующую и метаболическую, уча­ствует в защите внутренней среды от хронического ацидоза, явля­ется ловушкой для попадающих в организм тяжелых металлов и радиоактивных изотопов, участвует в гистогенезе кроветворной тка­ни.

Кость — это непрестанно обновляемая ткань, в которой отдель­ные участки постоянно разрушаются, а на их месте образуются новые.

В течение 10 лет у взрослого человека практически обнов­ляется вся костная ткань (физиологическая регенерация). Следова­тельно, в костной ткани непрерывно сосуществуют два основных процесса: резорбция и формирование ткани.

Эти процессы связаны с деятельностью клеток костной ткани: остеобластов, остеоцитов и остеокластов.

Костная ткань состоит из органического матрикса или остеоида, на долю которого приходится около 35% массы, и минерального компонента (65%).

Функционально – структурной единицей компакт­ной кости является остеон, представляющий собой концентрически расположенные пластинки вокруг гаверсова канала, в котором про­ходят кровеносные сосуды.

В губчатой кости трабекулы находятся в полостях, включающих костный мозг, и окружены многочисленными кровеносными капиллярами. Органический матрикс синтезируется

545

остеобластами, обладающими высокой синтетической деятельностью и секретирующими коллаген и протеогликаны, фосфолипиды и щелочную фосфатазу, необходимые для минерализации кости.

При формировании кости остеобласты окружаются по периферии мине­рализованными участками ткани и превращаются в остеоциты, глав­ной функцией которых является поддержание обмена веществ уже минерализованных костных участков.

Третий тип клеток — остео­класты — располагается по поверхности кости в особых углублени­ях или нишах резорбции, образуемых за счет деятельности этих клеток. Остеокласты путем экзоцитоза выделяют Н-ионы, растворя­ющие минералы кости, секретируют лизосомальные ферменты (гид­ролазы и коллагеназы), разрушающие костный матрикс.

В надкостнице находится популяция стволовых остеогенных кле­ток, сохраняющих способность к пролиферации на протяжении всей жизни. За счет этих клеток происходит образование новых слоев костной ткани снаружи (в периосте), при одновременной резорбции костной ткани изнутри (эндоосте).

Так растет кость в ширину, при этом костномозговой канал расширяется, а толщина стенки трубча­той кости практически не меняется. В процессе роста костей в длину важную роль играет хрящевая ткань эпифазарных концов, образующая зоны роста за счет способных к пролиферации хондро-цитов.

Для роста костной ткани важное значение имеют особенности кровообращения. Это связано с несколькими механизмами. Во-пер­вых, кровоток обеспечивает обмен кальция и фосфора между кровью и костной тканью, необходимый для постоянного обновления кости.

Во-вторых, кровоток приносит в костную ткань органические суб­страты метаболизма и, прежде всего, глюкозу, высокое потребление которой костной тканью обусловлено низким содержанием в при­текающей крови кислорода и гликолитическим путем получения энергии.

Глюкоза используется также для синтеза гликогена, необ­ходимого для процессов минерализации растущей кости. В-третьих, поступающая в кость кровь имеет высокое напряжение углекислого газа, что является одним из факторов, способствующих костеобра-зованию.

В-четвертых, кровоток создает в растущей костной ткани электрохимический потенциал, способствующий преципитации солей и образованию очагов кальцификации.

Повышение кровотока активизирует рост костей в длину. В ус­ловиях механических нагрузок кровоток возрастает, что стимулирует рост кости.

Механические нагрузки повышают процессы костеобра-зования и благодаря пьезоэлектрическому эффекту — генерирова­нию потенциалов в местах контакта кристаллов минерального веще­ства кости гидроксиаппатита с органическим веществом — коллаге­ном. Возникающие электрические потенциалы способствуют движе­нию ионов и молекул по питающим костную ткань каналам.

Пре­кращение механических нагрузок обычно ведет к атрофии кости от бездеятельности. Это связано с нарушениями кровообращения, электрохимических потенциалов и преобладанием процессов деструк­ции над процессами образования костной ткани. Одной из новых

546

разновидностей этого явления стала потеря кальция костной тканью в условиях невесомости при космических полетах. Напротив, при постоянных избыточных нагрузках формируется рабочая гипертрофия кости.

Регуляция роста костей осуществляется гормонами — соматотро-пином, гормонами щитовидной и половых желез, а также сомато-мединами или инсулиноподобными факторами роста (ИПФ), один из которых образуется в печени под влиянием соматотропина (ИПФ-1), а другой — (ИПФ-2) — самими хондроцитами хрящевой зоны роста (рис.14.1).

При этом соматотропин способствует образованию чувствительных к ИПФ- 1 хондроцитов из клеток предшественников, а в дальнейшем, под влиянием ИПФ-1 происходит пролиферация хондроцитов и образование гипертрофированных клеток, уже спо­собных к оссификации (рис. 14.2).

Рост и дифференцировку остеоб­ластов стимулирует и гормон кальцитриол, основная функция кото­рого заключается в регуляции процессов минерализации.

Наряду с постоянной физиологической регенерацией, костная ткань обладает способностью к сепаративной регенерации, т.е. вос­становлению структуры и функции после повреждения (перелома).

Репаративная регенерация реализуется теми же элементами костной ткани, которые обеспечивают рост и обновление костной структуры — хондроцитами и стволовыми остеогенными клетками надкостни­цы, соединительнотканными клетками межбалочных пространств губ­чатого вещества и сосудистых каналов остеонов, остеобластами. Остеоциты в регенерации не участвуют. Остеокласты стимулируют регенерацию гуморальными факторами.

Раньше всего в процесс регенерации включаются клетки надкост­ницы, образующие быстро растущую хрящевую ткань, что обеспе­чивает формирование периостальной (наружной) костной мозоли, способствующей фиксации костных отломков и их обездвиживанию.

Регенерация также происходит со стороны костномозговой полости, приводя к образованию эндостальной костной мозоли. Последняя играет большую роль при переломах эпифизарных частей трубчатых костей, состоящих из губчатой ткани с малым числом ростовых клеток надкостницы.

В подобных случаях мозоль образуется из клеток межбалочных пространств.

Состояние покоя в области перелома облегчает процесс форми­рования костной мозоли в межотломковой щели (интермедиарная мозоль), завершающей сращение перелома. Кровеносные сосуды прорастают в щель перелома вместе с остеогенной тканью, как со стороны надкостницы, так и из эндооста.

Образовавшаяся костная мозоль с помощью остеобластов постепенно перестраивается, при­обретая типичное для костной ткани трабекулярное или остеонное строение.

Регенерация кости не является лишь местным процессом, а сопровождается общими изменениями минерального и белкового обмена, функций эндокринных желез и других физиологических процессов в организме.

Минерализация кости, т.е. отложение неорганических веществ в ранее образованный органический матрикс, осуществляется с учас-

547

Рис. 14.1. Схема гормональной регуляции роста костей в длину. СТЛ — соматолиберин, СТС — соматостатин, ИПФ-2 — инсулиноподобный фактор роста хрящевого происхождения, (+) — активация, (-) — ингибирование; штриховая стрелка — реализация инсулиноподобных эффектов.

тием коллагена как каркаса. При этом минеральные кристаллы включаются внутрь коллагеновых фибрилл и скрепляются с ними с помощью протеогликанов.

Основным минеральным соединением фосфата кальция в кости является гидрокеиаппатит, образующий микрокристаллы с огромной суммарной поверхностью — до 100 га.

Сильное электростатическое поле кристалла удерживает вокруг него гидратную оболочку, играющую основную роль в обмене ионами

548

Рис.14.2. Прямой и опосредованный эффекты соматотропина (СТГ).

ИПФ-1 — инсупиноподобный фактор роста.

между кристаллами и внеклеточной жидкостью. В микрокристаллы кроме кальция и фосфора включаются и другие ионы — карбонат, нитрат, натрий, калий, магний, фтор, свинец, стронций и т.п.

Процесс минерализации кости состоит в образовании остеоблас­тами или хондробластами мембранных везикул, отпочковывающихся во внеклеточное пространство. В везикулах содержится много фос-фолипидов и щелочная фосфатаза.

Везикулы захватывают и накап­ливают кальций и фосфор, после чего первично образуется фосфат кальция, преобразуемый затем в гидроксиаппатит с участием щелоч­ной фосфатазы.

Благодаря наличию в везикулах фосфолипидов, начинается непрерывный рост кристаллов оксиаппатита, продолжа­ющийся и после разрыва пузырька. Щелочная фосфатаза взаимо-

549

действует с коллагеном, структура которого способствует упорядочи­ванию пролиферации кристаллов.

Процессы минерализации и деминерализации кости обеспечивают гомеостазис кальция и фосфора в организме и регулируются тремя кальцийрегулирующими гормонами — паратирином, кальцитонином и кальцитриолом (см.главу 5).

в костной ткани больших количеств кальция и фос­фора, а также непрерывность сопряженных процессов образования и разрушения ткани позволяют говорить о том, что костная ткань выполняет резсрвуарно-депонирующую функцию по отношению к этим ионам.

Действительно, 99% из почти 2 кг содержащегося в организме кальция и 87% всего фосфора находится в костной ткани и может быть легко мобилизовано из нее в кровь.

Таким образом, содержание кальция в крови, а следовательно его уникальная фи­зиологическая роль в регуляции жизнедеятельности многочисленных клеток, зависят от особенностей постоянно происходящего обмена кальция между кровью и костной тканью.

Кальций и фосфор яв­ляются для организма настолько необходимыми элементами, что резервуарно-депонирующую функцию можно даже считать основной функцией костной ткани.

Резервуарно-депонирующую функцию кость выполняет не только в отношении кальция и фосфора, но и для других макро- и микро­элементов. Так, в костной ткани содержится 50% всего магния и 46% всего натрия организма.

Все элементы, избирательно накапли­вающиеся в костной ткани, можно разделить на две группы — 1) участвующие в ионном обмене, равномерно распределенные в ми­неральной фазе кости (Са, Sr, Ba, Ra, P, F, Nb, Mg, Na) и 2) поступающие путем коллоидной адсорбции, скапливающиеся в эн-доосте, периосте и плохо проникающие в минеральное вещество (Y, La, Zr, Th, Ac.

Способность костной ткани при образовании микрокристаллов минерального вещества заменять в кристаллической решетке окси-аппатита ионы кальция на другие, так называемые остеотропные микроэлементы, лежит в основе функции кости как ловушки для попадающих в организм ионов.

Это проявляется не только в отно­шении свинца, обычно конкурирующего с кальцием в биологических субстратах, но и радиоактивных элементов, прежде всего стронция-90. Связывание и концентрирование стронция в костной ткани является, с одной стороны, защитным процессом, так как изотоп элиминируется из внутренней среды.

Но с другой стороны, накоп­ление в костной ткани радиоактивного элемента ведет к прицель­ному облучению костного мозга, наиболее чувствительной ткани к действию ионизирующей радиации.

Поскольку образующиеся при построении участка костной ткани минеральные кристаллы сохраня­ются до момента разрушения этого участка при обновлении кости, постольку радиоактивные элементы, включенные в минеральное ве­щество костной ткани, сохраняются в нем очень долгое время.

Костная ткань играет определенную роль и в поддержании кис­лотно-основного состояния внутренней среды. Являясь мощным

550

резервуаром катионов, костная ткань способна связывать слабые кислоты при длительных сдвигах рН в кислую сторону и снижении буферных оснований внутренней среды, основную роль при этом играют ионы натрия костной ткани. Паратирин, приводящий к деминерализации костной ткани, одновременно мобилизует и нат­рий, пополняющий резерв буферных оснований крови.

Чрезвычайно важную роль играет костная ткань в обеспечении кроветворения.

Являясь основной частью микроокружения гемопо-этической ткани костного мозга, костная ткань образует стромаль-ный плацдарм, на котором осуществляется дифференцировка крове­творных клеток (глава 6).

Помимо биофизического взаимодействия костной и кроветворной ткани, связи между ними осуществляются с помощью местных гуморальных факторов, стимулирующих как костеобразованне, так и гемопоэз.

Дата добавления: 2016-03-27; просмотров: 293; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

ПОСМОТРЕТЬ ЁЩЕ:

Источник: https://helpiks.org/7-61533.html

Строение костной ткани

Как связано строение и функции костной ткани

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Контрольная работа по дисциплине:

Анатомия и возрастная физиология

Екатеринбург 2013

f1. Строение костной ткани

1. Костная ткань это разновидность соединительной ткани, состоящая на 50 % из воды, 30% органических веществ (осеин), на 70% из неорганических (гидроксианатит Са10 (PO4) 6 (ОН) 2, но имеются также в различных количествах натрий, магний, калий, хлор, фтор, карбонаты и нитраты).

2. Если опустить кость в соляную или азотную кислоту, то через некоторое время она становится мягкой и эластичной (декальцинированная кость). Такая кость легко сгибается. Это происходит потому, что кислота растворяет соли и в кости остается только осеин, за счет которого кость эластична.

При обжигании на огне кость, как и в первом случае, сохраняет свою первоначальную форму, однако становится хрупкой и ломкой вследствие сгорания осеина. В результате обжигания остаются только неорганические вещества. Следовательно, эластичность кости обеспечивается наличием осеина, а ее твердость обусловлена наличием неорганических веществ.

Клетки

Функции и месторасположение

1.Остеоциты

Обеспечивают метаболизм, находятся на наружной поверхности кости (у надкостницы) и на поверхностях внутренних пространств кости

2.Остеобласты

Ростковые клетки, выполняющие функцию создания кости. Они расположены в зонах костеобразования на внешних и внутренних поверхностях кости.

3.остеокласты

Клетки, выполняющие функцию рассасывания, разрушения кости, находятся на поверхности костной ткани.

Рис. 1. Схема строения трубчатой кости: 1 — диафиз; 2 — эпифизы; 3 — костномозговая полость; 4 — надкостница; 5 — надхрящница; 6 — суставной хрящ; 7 — губчатое костное вещество; 8 — компактное костное вещество; 9 — эндохондральная (возникшая внутри хряща) кость; 10 — пластинка роста.

Эпифиз заполнен красным костным мозгом, производящим эритроциты (красные кровяные тельца). Выполняет кроветворную функцию.

В диафизе расположен костномозговой канал, заполненный жёлтым костным мозгом (у детей — красным). Богат жировыми клетками.

Функции надкостницы:

– способствует формированию кости при росте кости в толщину;

участвует в образовании костной мозоли при переломах;

обеспечивает кровоснабжение и иннервацию поверхностных слоев кости;

– к надкостнице прилегают сухожилия и связки, прикрепляющиеся к кости.

Короткие кости, или ossa brevia, состоят из особого губчатого вещества, в ячейках которого располагается красный костный мозг. Большинство коротких костей располагаются в запястье и в плюснах.

Именно благодаря этим костям у человека такие подвижные кисти и стопы.

Плоские кости (ossa plana) несколько различаются по происхождению: существуют плоские кости, развившиеся из соединительной ткани (кости черепа) и плоские кости, развившиеся из хрящей (тазовые кости, лопатки).

Длинные

широкие

Короткие

Смешанные

плечевая

Лобная

Кости запястья

клиновидная

Бедренная

Лопатка

Предплюсна

височная

Кости предплечья

Теменная

пальцы

ключица

голень

Тазовые кости

2. Типы соединения костей

1.Типы соединения костей. Развитие связочно-суставного аппарата (соединение костей) в эмбриогенезе происходит одновременно с развитием скелета (костей). Вначале кости соединены друг с другом мезенхимной тканью (Атл., рис. 6, А, Б, В, Г, с. 47).

В стадии образования хряща развивающихся костей мезенхимная ткань между ними постепенно разрыхляется и затем исчезает. В результате образуется суставная полость, которая ограничена от окружающих тканей суставной капсулой, возникшей также из мезенхимы. Из нее в некоторых суставах развиваются суставные мениски, диски и связки.

Подобным образом формируются прерывные соединения (суставы).

Если в процессе развития мезенхима не исчезает между хрящами будущих костей, то образуются непрерывные соединения. В этом случае кости могут соединяться друг с другом соединительной, хрящевой или костной тканью.

Непрерывные соединения (синартрозы) характеризуются ограниченностью размахов движений и сравнительно небольшой подвижностью. В зависимости от характера ткани, соединяющей кости, непрерывные соединения делятся на три вида: синдесмозы — соединение костей соединительной тканью; синхондрозы — соединение костей хрящевой тканью и синостозы — соединение костей при помощи костной ткани.

Синдесмозы — соединение костей посредством соединительной ткани. Если соединительная ткань имеет строение волокнистых пучков, то получаются фиброзные связки (связки позвоночного столба).

Когда промежуточная соединительная ткань приобретает характер тонкой прослойки между костями черепа, то возникают швы: а) зубчатый — когда зубцы на краю одной кости входят в промежутки между зубцами другой (соединение костей свода черепа); б) чешуйчатый — когда край одной кости накладывается на край другой (между краями височной и теменной костей); в) плоский — прилегание незазубренных краев (между костями лицевого черепа).

Синхондрозы — соединение костей посредством хрящевой ткани. Это упругие соединения, движения их невелики и имеют пружинящий характер. Они зависят от толщины хрящевой прослойки: чем она толще, тем подвижность больше.

Хрящевая ткань в этом соединении может быть двух видов: гиалиновый хрящ (например, соединение между 1-м ребром и грудиной) и волокнистый хрящ, возникающий там, где сказывается большое сопротивление механическим воздействиям, например, между телами позвонков.

Синостозы — соединение посредством костной ткани. Они являются результатом сращения ранее обособленных друг от друга костей или их частей. Например, сращение диафиза с эпифизами у взрослого и образование длинной кости.

Прерывные соединения, или суставы, относятся к более сложной форме подвижных соединений костей. Каждый сустав имеет три основных элемента: суставные поверхности, суставную сумку и суставную полость.

Суставные поверхности покрыты суставным хрящом, гиалиновым, реже волокнистым, толщиной 0,2–0,5 мм. Суставной хрящ облегчает скольжение суставных поверхностей, вследствие своей эластичности он смягчает толчки и служит буфером.

Суставная капсула (сумка) герметически окружает суставную полость, прирастает к суставным поверхностям по их краю или несколько отступает от них. Она состоит из двух слоев: наружного (фиброзного) и внутреннего (синовиального).

Фиброзный слой образован плотной соединительной тканью, а синовиальный — из рыхлой соединительной ткани.

Она выделяет в полость сустава липкую прозрачную синовиальную жидкость — синовию, которая обеспечивает смазку соприкасающихся суставных поверхностей.

Суставная полость — это герметически закрытое щелевидное пространство, ограниченное суставными поверхностями и синовиальной жидкостью, которая увлажняет и смазывает суставные поверхности, уменьшая трение между ними. Кроме того, синовия играет роль в обмене жидкости и в укреплении сустава благодаря сцеплению поверхностей.

Она служит также буфером, смягчающим сдавление и толчки суставных поверхностей при их скольжении и расхождении. Между суставными поверхностями создается отрицательное давление (меньше атмосферного), поэтому их расхождению препятствует атмосферное давление.

Этим объясняется чувствительность суставов к колебаниям атмосферного давления при некоторых заболеваниях.

При повреждении суставной капсулы воздух попадает в полость сустава, вследствие чего суставные поверхности немедленно расходятся. Кроме трех основных элементов, образующих сустав, имеется еще вспомогательный аппарат: суставные связки, суставные диски, мениски и синовиальные сумки, суставные губы.

Суставные связки состоят из плотной соединительной ткани и направляют движение суставных поверхностей вокруг оси вращения. В некоторых суставах имеются связки, располагающиеся в суставной полости.

Внутрисуставные хрящи развиваются из хрящей первичных непрерывных соединений, придают суставу крепость и эластичность, содействуя движению в суставах.

Синовиальные сумки являются мешкообразными выворотами внутреннего слоя капсулы: синовиальная оболочка, выпячиваясь через участок фиброзного слоя суставной капсулы, образует сумку, которая располагается под сухожилием или под мышцей и находится непосредственно у сустава. Синовиальные сумки уменьшают трение между сухожилиями, мышцами и прилегающей к ним костью.

Название сустава

форма

Движения

1.Атлантозатылочный

Эллипсоидный

Двуосные

2.грудино-ключичный

седловидный

двухосные

3.плечевой

шаровидный

трехосные

4.лучелоктевой

цилиндрический

одноосные

5.лучезапястный

эллипсоидный

двухосные

6.тазобедренный

шаровидный

трехосные

7.коленный

мыщелковый

двуосные

8.голеностопный

Блоковидный

одноосные

3. Осанка и плоскостопие

Проверьте свою осанку. Заполните таблицу 1:

Таблица

Наличие нарушений

Результаты наблюдений

Вывод

Выявление боковых искривлений

1.Углы лопаток на одном уровне.

2.Один плечевой сустав расположен выше другого.

3.Треугольники, образованные между туловищем и опущенными руками, равны. 4.3адние отростки позвонков образуют прямую линию.

Да или нет I.нет

2.да

3.нет

4.нет

Определение сутулости

Мерной лентой измерьте расстояние между наиболее удаленными друг от друга точками плеча в области плечевых суставов левой и правой руки:

l.Co стороны груди

2. Со стороны спины Разделите первый результат на второй.

Чем дробь меньше, тем сутулость больше. Если частное близко к 1, то это норма.

1. 34 _____

2. _ 39_________

1: 2__0,87_______

Определение нарушений поясничного изгиба позвоночника

Встаньте спиной к стене.

1 .Просуньте ладонь между стеной и поясницей.

2.Попробуйте просунуть кулак.

Если последнее удастся, то осанка нарушена.

Норма

Осанка нарушена (подчеркнуть соответствующее)

Возможные причины нарушения осанки: укорочение одной конечности, неправильная поза за столом в школе, малая двигательная активность

4. Влияние динамической и статической нагрузки на изменения ритма сердца

костный ткань суставный соединение

Цель работы: Выявить изменения вариабельности сердечного ритма при динамической и статической работе.

Оценить напряженность работы сердца по данным частоты сердечных сокращений на стандартную динамическую и статическую нагрузки.

Динамическая работа выполняется в течение 2-х минут, с паузой отдыха между сериями в 30 секунд. Функциональная проба выполняется из положения основной стойки, руки на поясе, испытуемый выполняет глубокие приседания, руки вперед. Приседания выполняются в течение 1 мин с количеством повторений 40 раз.

Регистрация частоты сердечных сокращений (ЧСС) измеряется в положении сидя до нагрузки и сразу же после выполнения за 10 секунд.

Выявить, какая физическая нагрузка предъявляет большие требования к изменению частоты сердечных сокращений.

При динамической нагрузке ЧСС увеличивается в большей степени.

Объяснить с физиологической точки зрения причины изменения ЧСС во время выполнения динамической и статической работы.

Физиологические реакции при динамической работе (возрастание ЧСС, АД, ударного и минутного объема крови, изменения регионарного и общего сосудистого сопротивления и др.) зависят от силы и частоты сокращений, размеров работающих мышц, степени тренированности человека, положения тела, в котором выполняется работа, условий окружающей среды.

При статической работе, в отличие от динамической, имеют место весьма незначительные увеличения потребления кислорода и минутного объема крови. При этом существенно возрастают ЧСС, АД, ЧД и общее периферическое сопротивление сосудов.

Физиологические реакции сердечно-сосудистой системы при статической работе зависят от силы и продолжительности сокращения мышц.

В случае работы до сильного утомления при равных величинах относительных усилий эти реакции мало зависят от размеров работающих мышц.

Размещено на Allbest.ru

Источник: https://revolution.allbest.ru/medicine/00675815_0.html

Лечение Костей
Добавить комментарий