Процесс внутренней перестройки костной ткани

Как происходит перестройка костной ткани при перемещении зубов

Процесс внутренней перестройки костной ткани

79

Перемещение зубов – это сложный биомеханический процесс, сопровождающийся перестройкой альвеолярного отростка.

Впервые о его возможности заявил французский стоматолог Пьер Фошар в начале 18-го века. С тех пор были проведены многочисленные исследования, и в настоящее время процесс перестройки костных тканей челюстного аппарата при перемещении зубов достаточно изучен.

Механизм происходящих процессов

Человек сталкивается с двумя видами смещения зубов – физиологическим и ортодонтическим (лечебным).

Физиологическая миграция является следствием выполнения основной функции – жевания. Зубы одного ряда контактируют между собой по апроксимальным поверхностям. Из-за амортизации периодонта во время жевания апроксимальные поверхности истираются, что должно, по идее, приводить к возникновению между ними зазора. Однако этого не происходит из-за апроксимального дрейфа.

Зубы разных челюстей контактируют по окклюзионным поверхностям со своими антагонистами. Вследствие истирания жевательной или режущей поверхности, возникает окклюзионное (вертикальное) смещение.

Апроксимальный дрейф

При истирании боковых поверхностей они становятся менее выпуклыми, однако зубы не теряют контакта друг с другом из-за одновременного истончения альвеолярных перегородок и приближения их друг к другу.

Это явление называется апроксимальным дрейфом. Окклюзионная нагрузка, под действием которой зуб мигрирует в горизонтальном направлении, направлена вперед. Поэтому апроксимальный дрейф всегда принимает форму мезиальной миграции (зуб движется к центру дуги), и никогда – дистальной.

Очевидно, что мезиальный дрейф не был бы возможен, если бы костная ткань альвеолярных лунок не перестраивалась, делая такую миграцию возможной.

Суть перестройки состоит в том, что на медиальной стороне зуба периодонт после начала истирания апроксимальных поверхностей вначале сужается, а потом, благодаря образованию новой костной ткани, увеличивается.

На дистальной стороне происходит обратный процесс – периодонтальная связка сначала расширяется, а потом из-за образования слоя новой кости – сужается.

Справка. Резорбция и генерирование новой костной ткани – это различные стороны одного и того же процесса – костного метаболизма. В этих процессах принимают участие различные клетки, локализованные в периодонте.

Основную работу выполняют остеокласты и остеобласты. Первые активируют рассасывание костной ткани, в функцию вторых входит образование молодых костных клеток.

Таким образом, в процессе эксплуатации зубов костная ткань альвеолярных лунок рассасывается с медиальной стороны и генерируется с дистальной. В результате этого зубы постепенно сдвигаются вперед по альвеолярному отростку. При этом толщина периодонтальной щели практически не изменяется.

Окклюзионный дрейф

Постепенное физиологическое истирание окклюзионных поверхностей зубов приводит к их выдвижению из альвеолярного отростка. Такая миграция называется окклюзионным дрейфом.

Она вызывается отложением цемента в апексе корня и перестройкой стенок альвеолярных лунок на всей их высоте. Окклюзионный дрейф становится особенно интенсивным при потере зубов антагонистов.

Ортодонтическое смещение

Ортодонтическое смещение – это принудительное перемещение зубов с целью нормализации их положения. Природа ортодонтического лечения заключается в том, что под действием механического усилия в периодонте активизируются остеокласты и остеобласты.

Результатом их активности становится рассасывание стенки альвеолярной лунки в области сжатия и разрастание твердых тканей в области растяжения.

На той стороне, где периодонт сдавливается, внутренняя стенка альвеолы рассасывается, наружная – наращивается за счет образования твердых тканей. На стороне растяжения периодонтальная щель изначально увеличивается из-за растяжения периодонта, однако потом, при отложении на внутренней стороне альвеолы молодой кости, принимает прежние размеры.

Таким образом, перемещение единицы при ортодонтической коррекции происходит, благодаря перестройке твердой ткани зубочелюстного аппарата (чаще всего альвеолы) под действием механического усилия, создаваемого ортодонтическим аппаратом.

Кстати сказать, жевательная нагрузка также вызывает перестройку альвеолярной кости, но она, во-первых, незначительна, а во-вторых, не имеет определенного направления, как при ортодонтическом лечении.

Скорость перемещения зубов зависит от интенсивности перестройки альвеолярной лунки, а та, в свою очередь, от прилагаемого усилия, структуры и состава кости.

Губчатая ткань, содержащая тонкие трабекулы и большое количество остеобластов и остеокластов (что свойственно детской кости) способствует быстрому перемещению. В компактной кортикальной кости перестройка происходит медленно.

Таким образом, зубы человека находятся в постоянной, незначительной физиологической миграции. С возрастом они смещаются вперед и выдвигаются из альвеолярного гребня. При ортодонтическом лечении перемещение идет довольно быстро – около 1 мм в месяц, иногда быстрее.

Биологическая функция периодонта

Периодонт или периодонтальная связка – это тонкий слой ткани, окружающей зуб со всех сторон и располагающейся между его цементом и костью альвеолярной лунки. Толщина периодонта составляет 0,20-0,25 мм. Наиболее важную роль при жевании играют коллагеновые волокна, на которые приходится около 60% объема всего периодонта.

Периодонтальная связка выполняет несколько функций. Основная из них – распределительно-регулирующее действие (восприятие жевательной нагрузки, приложенной к зубу, и равномерное распределение ее на кость альвеолы).

Кроме этого, периодонт выполняет:

  • механостатическую функцию (удерживает зуб в альвеоле);
  • защитную (обеспечивает гомеостаз своих и окружающих тканей);
  • трофическую (через него осуществляется питание зуба);
  • пластическо-репаративную (обеспечивает обновление дентина и эмали);
  • сенсорную (реакция тканей периодонта в ответ на восприятие рецепторами механических раздражений).

Жевательная нагрузка на зуб может быть вертикальной (осевой) и горизонтальной. Первая наиболее физиологична, периодонт справляется с ней относительно легко, чего нельзя сказать о горизонтальной нагрузке.

В большинстве случаев при изменении жевательных нагрузок периодонт адаптируется к новым условиям без негативных для себя последствий.

Однако если жевательная нагрузка превышает определенное значение в течение длительного времени, или приложена неправильно вследствие зубных аномалий, индивидуальная выносливость пародонта может быть превышена, что чревато патологическими изменениями в его тканях.

Важна не столько величина нагрузки, сколько ее направление и продолжительность действия. Осевая ритмическая, с короткими фазами жевания нагрузка не нарушает предел выносливости пародонта даже при высоких значениях.

В то время как горизонтальная, длительно действующая, особенно в сочетании с парафункциями, сказывается на состоянии пародонта крайне негативно, приводит к ретракции, утолщению или щелеобразному расхождению десен.

Состояние периодонта могут усугублять общие заболевания, аномальное расположение и наклон зубов, частичная адентия, нежелательные контакты из-за выступающих пломб или коронок. В частности, при нагрузке элементов, аномально наклоненных вперед из-за протрузии, изменения в периодонте могут возрастать в 20 раз.

Большое значение имеет и место приложения усилия к коронке элемента. Если соотношение высоты коронки и длины внутриальвеолярной части нарушено, возникает неблагоприятное для периодонта рычагообразное действие.

Взаимосвязь используемых сил и морфологических изменений

При определении оптимальной силы воздействия ортодонтического аппарата за базовый ориентир принимается давление, при котором в тканях периодонта прекращается капиллярное кровообращение.

В зависимости от величины, прилагаемой к зубу силы, различают 4 степени изменений периодонта:

  • 1-я степень. Имеет место при использовании малой силы – 15-20 г/см2. Кровообращение не нарушается, процесс рассасывания и образования твердых тканей альвеолярной лунки уравновешен, зуб сохраняет устойчивость.
  • 2-ая степень. Давление составляет 20-25 г/см2. Периодонт в некоторых участках сдавливается с нарушением кровообращения, однако, благодаря тому, что в соседних участках оно не нарушено, перестройка кости происходит нормально, без морфологических и функциональных нарушений.
  • 3-я степень. Наблюдается при повышении давления свыше 26/см2. Кровообращение нарушается на больших участках периодонта. Это приводит к небольшой частичной резорбции корня зуба, которая хоть и создает морфологический дефект, но не сказывается на его функциональности.
  • 4-ая степень. Наступает при еще более высоком давлении. Характеризуется резорбцией не только кости альвеолярной лунки, но и твердых тканей зуба. Рассасывание последних проявляется в виде лакун (впадин) в дентине. При зарастании последних костью происходит сращивание (анкилоз) корня с альвеолой.Неблагоприятным последствием анкилоза является снижение или полное прекращение амортизации зуба. То есть периодонт перестает выполнять главную свою функцию – амортизацию и равномерное распределение нагрузки, что приводит к нарушению его функциональности.

Оптимальными ортодонтическими силами считаются такие, которые обеспечивают вторую и третью степень морфологических изменений. В этом случае коррекция проходит максимально быстро при сохранении функциональности зубов.

При этом силы, обеспечивающие вторую степень перестройки, должны быть постоянными, обеспечивающие третью степень – перемежающимися.

Прилагаемая к зубу сила должна иметь постоянное направление. Его периодическое изменение плохо влияет на перестройку альвеолярного отростка.

Чтобы альвеолярная лунка начала перестраиваться, нагрузка должна действовать не меньше 6-7 часов в сутки и восстанавливаться за счет активации каждые 3-4 недели.

Преобразования при расширении верхней челюсти

Сужение челюстей (чаще верхней) – довольно распространенная аномалия, приводящая к перекрестному прикусу и скучиванию фронтальных зубов.

Расширение ВЧ в детском и подростковом возрасте (при несросшемся срединном небном шве) – вполне прогнозируемая и успешно решаемая задача. У взрослых с закостеневшим швом – этот более трудная проблема, требующая иногда хирургического вмешательства.

Расширение челюстей зиждется на трех принципах:

  • Использование дополнительно к кольцам на опорные зубы лингвальной дуги-балки, которая передает усилие на весь боковой ряд вплоть до клыков. В некоторых аппаратах для верхней челюсти балка заменяется акриловой пластиной. И балка, и пластина передают давление в пришеечной области, способствуя корпусному перемещению зубов, а не их наклону.
  • Создание из боковых зубов монолитного блока. Исключает перемещение отдельных единиц.
  • Передача расширяющего усилия не только на зубной ряд, но и нёбный свод. Этот принцип используется в основном в аппаратах для детей с целью снижения нагрузки на молочные зубы.

Верхняя челюсть имеет срединный шов, по которому и происходит расширение. Это особенность значительно упрощает задачу, в частности, у детей и подростков, у которых шов не облитерирован. Расширение челюсти происходит за счет увеличения ширины шва.

У взрослых происходит разрыв небного шва с последующим расширением и зарастанием образовавшейся щели новой костью. Если аппаратный способ расширения у взрослого пациента не приводит к успеху, прибегают к хирургическому вмешательству.

Наилучшего результата достигают, когда расширение осуществляют медленно, небольшими силами. В этом случае образующаяся новая кость шва имеет правильную, равномерную структуру. Быстрое расширение может приводить к неравномерной структуре вновь образующейся в шве костной ткани.

Нижняя челюсть в отличие от верхней не имеет шва, ее половины являются полностью сросшимися. Поэтому расширение НЧ представляет, по сути, вестибулярный наклон зубных рядов без расширения челюстной кости.

В видео смотрите процесс скелетного расширения верхней челюсти.

Изменения ВНЧС при коррекции НЧ

Механизм изменений в ВНЧС не отличается от такового в зубоальвеолярном отростке. В области давления имеет место резорбция, в области расширения – образование новой ткани.

В частности, при перемещении НЧ межчелюстной резиновой тягой вперед, происходит рассасывание тканей в области передней поверхности головки сустава и контактирующей с ней поверхности бугорка.

В задней части (в зоне растяжения) происходит новообразование кости. В результате происходит перемещение суставной впадины вперед.

Отличием коррекции ВНЧС от альвеолярного отростка является необходимость более длительной ретенции. Если время закрепления результата лечения недостаточно, суставная впадина быстро возвращается в первоначальное положение.

Другая особенность перестройки височно-нижнечелюстных суставов – ее тесная взаимосвязь с перестройкой функции мышц зубочелюстного аппарата, особенно латеральных крыловидных (pterygoideus lateralis), которые обеспечивают движение нижней челюсти в сторону и вперед.

Как и весь зубочелюстной аппарат, височно-нижнечелюстной сустав легче корректируется у детей и подростков, и гораздо труднее – у взрослых.

Выводы

Сложность и противоречивость изменений структуры и морфологии тканей альвеолярного отростка при перемещении зубов в процессе ортодонтического лечения требует от врача правильного составления плана лечения и точного выбора ортодонтического аппарата.

Особое внимание должно придаваться определению места приложения, направления, величины и продолжительности действия корректирующей силы.

Большое значение имеет возраст пациента, структура костных тканей его зубочелюстного аппарата, место коррекции (верхняя или нижняя челюсть).

Прогнозируемый и успешный результат лечения возможен только при правильном учете всех особенностей клинической картины.

, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник: http://orto-info.ru/ortodonticheskoe-lechenie/osnovnoy-period/perestroyka-kostnoy-tkani-pri-peremeshhenii-zubov.html

Хроническая микротравма костной ткани. Патологическая перестройка костной ткани

Процесс внутренней перестройки костной ткани

Костная ткань человека в процессе жизнедеятельности видоизменяется, приспосабливается к новым условиям трудовой деятельности.

Эта физиологическая перестройка происходит постоянно у артистов балета, под влиянием возрастающих физических нагрузок наступает анатомо-функциональная гипертрофия костной ткани в местах наибольшей нагрузки с увеличением компактного вещества кости, что носит приспособительный характер.

Эта перестройка имеет название физиологической функциональной перестройки, как приспособительной реакции костной ткани на специфическую трудовую деятельность артиста балета. Подобную перестройку у артистов балета можно видеть в костях стопы (плюсневых), большеберцовых и малоберцовых костях.

Клинически физиологическая функциональная перестройка костной ткани ничем себя не проявляет, только рентгенологически определяется уплотнение и расширение компактного вещества кости.

Такую группу танцовщиков необходимо брать на учет, так как при неблагоприятных условиях физиологическая перестройка может перейти в патологическую.

Это часто наблюдается при увеличении нагрузок у молодых артистов балета, только что пришедших в театр и еще не адаптировавшихся к новым нагрузкам, когда репетитор переоценивает физические возможности неокрепшего организма молодого танцовщика.

Причинами патологической перестройки могут быть отсутствие регулярности, последовательности и постепенности в репетиционном процессе, проведение танцев на жестком полу, отсутствие тщательного врачебно-педагогического контроля за здоровьем артистов балета.

Под влиянием хронической микротравматизации и наличии физиологической перестройки может возникнуть патологическая перестройка, характеризующаяся появлением микротрещин и микропереломов костных балок.

Причем количество микропереломов костных балок зависит от интенсивности физической нагрузки и ее продолжительности.

Заживление этих переломов протекает неравномерно, наряду с зонами резорбции (рассасывание) наблюдаются зоны повышенного склероза (уплотнение) .

Патологическая функциональная перестройка костной ткани возможна в различных костях, подвергаемых перенапряжению и перегрузкам — плюсневых, большеберцовой, дугах позвонков, ладьевидной кости стопы и реже в шейке бедренной кости.

Перестройка костной ткани проходит три стадии своего развития: I стадия — пери-остоз; II стадия — появление зон лакунарного или линейного рассасывания кости (зоны просветления Лоозера); III стадия — заживление зон перестройки, или патологический перелом зоны перестройки.

При увеличении нагрузок и их нерациональности, отсутствии должного врачебно-педагогического контроля за занимающимися артистами балета происходит дальнейшее утолщение компактного вещества кости, в процесс вовлекается надкостница, которая под влиянием хронической микротравматизации утолщается, становится неровной, с бахромчатыми краями, развивается периостоз — I стадия патологической перестройки костной ткани.

Периостоз характеризуется болями в соответствующей кости, появляющимися после физической нагрузки и исчезающими после отдыха. Местно определяются неровности на кости, болезненные при пальпации. Рентгенологически выявляется утолщение компактного вещества и неровности надкостницы.

При отсутствии своевременного квалифицированного лечения и продолжения танцев с болями эта стадия может перейти во II стадию, когда происходят изменения уже и костной ткани в виде появления зон линейного рассасывания кости (в трубчатых костях) или зон лакупарпого (ячеистого) рассасывания кости (в губчатых костях).

Клинически эта стадия проявляется постоянными болями в костях, подвергаемых большой нагрузке, боли не исчезают после отдыха.

Местно определяются гиперемия кожных покровов, отечность тканей, при пальпации отмечается резкая болезненность кости, которая становится бугристой, неровной, местами с муфтообразными утолщениями.

Рентгенологически выявляются различной интенсивности поперечные полосы просветления в виде единичных, а у некоторых артистов балета их бывает 3—5, иногда зоны лакунарного рассасывания.

III стадия — заживление зон перестройки — очень длительная, участки перестройки костной ткани полностью закрываются только через 1,5—2 года.

При столь длительном течении патологического процесса у артистов балета наступают явления детренированности, они лишаются возможности повышать свое исполнительское мастерство.

Это вызывает необходимость предупреждения развития зон перестройки костной ткани и поисков путей быстрого лечения данной патологии.

Биохимические исследования показали, что у большинства больных с патологической перестройкой костной ткани нарушен фосфорно-кальциевый обмен, что проявляется изменением содержания кальция и фосфора в сыворотке крови и усиленным выделением этих солей с мочой. Нарушение выделения оксипролипа и аминазота с мочой свидетельствует о нарушении метаболизма органических компонентов костной ткани.

При отсутствии квалифицированного лечения или несвоевременном обращении артиста балета, страдающего патологической перестройкой костной ткани, за медицинской помощью может произойти патологический перелом зоны перестройки. Этот перелом не травматический, а патологический, поскольку резко нарушена структура кости.

– Также рекомендуем “Хроническая микротравма хрящевой ткани. Лекарства для лечения микротравматической болезни”

Оглавление темы “Травмы опорно-двигательного аппарата”:

Источник: https://meduniver.com/Medical/profilaktika/1578.html

Биомеханика перестройки костных тканей при перемещении зубов

Процесс внутренней перестройки костной ткани

57

В результате влияния на челюстную систему человека давлением ортодонтической конструкции меняется ее анатомия. Образуются силы, которые стремятся вернуть ее в исходное положение.

Такое лечение провоцирует изменения в тканях. Рассмотрим процессы их перестройки более детально.

Окклюзивный дрейф

По мере того, как окклюзивные части зубной поверхности истончаются, сам орган выдвигается из альвеолярного отростка. Данное перемещение называется дрейфом окклюзии.

Планомерную миграцию провоцирует скопление цемента в корневой зоне и изменение толщины альвеолярной лунки по всему ее периметру. При полной или частичной адентии боковых фрагментов ряда, процесс становится максимально интенсивным.

Взаимосвязь величины используемых сил и морфологических изменений

Исходя из силы механической нагрузки, которую испытывает зуб, изменение периодонта классифицируют по нескольким показателям:

  • первая степень – развивается на фоне минимальной давящей силы не более 20 г/см². Система кровообращения функционирует стабильно, динамика формирования костной ткани и рассасывающие процессы протекают нормально. Зуб здоров и устойчив;
  • вторая степень – уровень давления – до 25 г/см². Наблюдаются фрагментарные сбои кровообращения, но поскольку патология не слишком обширна, твердая ткань перестраивается, функциональной и физиологической мутации клеток нет;
  • третья степень – давление превышает 26 см² на грамм. Кровообращение нарушено практически на всех участках периодонта. Начинается резорбция зуба, имеют место незначительные морфологические изъяны, но орган сохраняет свою функциональность;
  • четвертая степень – наблюдается на фоне предельно высокого давления. Наступает резорбция лунки альвеоляра, повреждается костная ткань. Ярко выражено рассасывание в дентине. По форме поражения напоминает углубления. Происходит срастание альвеолы и корня. Орган полностью или частично прекращает амортизировать.Периодонт больше не выполняет свое предназначение – соединительные волокна неспособны выдерживать и равномерно распределять давление. Результат ― зуб теряет защиту.

Результативная морфологическая нагрузка способна дать 2 или 3 степень изменений. При таких условиях челюстной ряд быстрее поддается коррекции.

Обязательное требование – давление должно быть порядка 7 часов в день, восстанавливаться посредством активации ежемесячно.

Важно! Указанной силы хватит, чтобы зуб начал отделяться от стенки альвеолы, периодонтальное пространство равномерно расширилось, а волокна обрели натяжение.

Необходимо, чтобы воздействие ортодонтической системы приходилось на вращающую ось зуба.

Трансформация ВНЧС при коррекции НЧ

Специфика изменений в ВНЧС ничем не отличается от преобразований зубоальвеолярного отростка. В зоне давления происходит резорбция, а в зоне расширения – наращивание новой ткани.

При перемещении НЧ вперед рассасываются твердые ткани головки сустава и бугорка. В задней области, где идет растяжение, образуется новая кость. Результат ― перемещение впадины сустава вперед.

Отличие исправления ВНЧС от перестройки альвеолярного отростка ― необходимость длительной ретенции. При недостаточном времени закрепления результата, впадина сустава быстро возвращается на исходную позицию.

Другой особенностью перестройки ВНЧС считается прямая взаимосвязь с изменением функции мышц челюстного аппарата, в особенности крыловидных, обеспечивающих движение НЧ по сторонам и вперед.

Отзывы

При устранении патологии необходимо правильно приложить направление, место и силу воздействия, а также рассчитать временные рамки корректирующих действий.

Не менее важен возраст пациента и место развития аномалии – процессы исправления дефектов нижней и верхней челюсти принципиально различны.

Положительная динамика лечения достигается при условии учета специфики полной клинической картины.

Источник: http://zubovv.ru/ortodontiya/prikus/perestroyki-kostnoy-tkani-pri-peremeshhenii.html

Процесс внутренней перестройки костной ткани

Процесс внутренней перестройки костной ткани
Только у нас: Введите до 31.03.2020 промокод бонус2020 в поле купон при оформлении заказа и получите скидку 25% на всё!

Перестройка кости и факторы, влияющие на структуру костей

В костной ткани в течение всей жизни человека происходят взаимосвязанные процессы разрушения и созидания. Перестройка остеонов всегда связана с разрушением первичных остеонов и одно­временным образованием новых остеонов как на месте разрушен­ных, так и со стороны периоста.

Разрушение первичных остеонов начинается только после образования остеокластов. Под влиянием остеокластов, активированных различными факторами, костные пластинки остеона разрушаются и на его месте образуется полость. Этот процесс называется резорбцией (от лат. resorptia — рассасывание) костной ткани.

В образовавшейся полости вокруг оставшегося сосуда появляются остеобласты и начинается построение новых пластинок, концентрически наслаивающихся друг на друга. Так возникают вторичные генерации остеонов, которые отличаются от первичных остеонов хорошо выраженными границами костных пластинок.

Примыкая друг к другу, остеоны образуют компактное вещество кости.

Между остеонами располагаются так называемые вставочные пластинки. Они представляют собой остатки разрушенных остео­нов ранних генераций. Процесс перестройки остеонов не приоста­навливается и после окончания роста кости. Одной из причин, вызывающих последующую перестройку кости, является измене­ние физической нагрузки на кость в течение жизни.

Старение скелета происходит не сразу, а в определенной последовательности, одновременно в симметричных участках. Оно проявляется в возникновении костных разрастаний на суставных концах, в изнашивании хрящевых и других тканей костно-суставного аппарата, в уменьшении толщины костей и развитии остеопороза.

Раньше всего стареют суставы позвоночника (сначала в шейном отделе, затем в грудном, позже- в поясничном). Непрерывная перестройка костной ткани- характерный признак ее жизнедеятельности.

Кость растет, достигает зрелого возраста, находясь в течение ряда лет в состоянии динамического равновесия, а затем стареет.

Среди факторов, влияющих на перестройку костной ткани, су­щественную роль играет при различных деформациях ее так назы­ваемый пьезоэлектрический эффект. Оказалось, что в костной пластинке (живой или выпиленной из кости) при изгибах появля­ется определенная разность потенциалов между вогнутой и вы­пуклой стороной. Первая заряжается отрицательно, а вторая — положительно.

В живой кости на отрицательно заряженной по­верхности всегда отмечается процесс аппозиционного новообразо­вания костной ткани, а на положительно заряженной, напротив, часто наблюдается ее резорбция с помощью остеокластов.

Уста­новлено также влияние искусственно созданной разницы электро­потенциалов на регенерацию костной ткани и трофику, что нахо­дит применение в хирургической клинике при лечении переломов.

Отсутствие физической нагрузки на костную ткань (продолжи­тельная иммобилизация, пребывание в состоянии невесомости и др.) приводит к повышению функций остеокластов и выведению солей. Изменения костей происходят под влиянием физиче­ских нагрузок.

При высоких механических нагрузках кости приобретают, как правило, большую массивность, а в ме­стах сухожильного прикрепления мышц образуются хоро­шо выраженные утолщения — костные выступы, бугры, гребни.

Статические и динамические нагрузки вызывают внутреннюю перестройку компактного костного вещества (увеличение количества и размеров остеонов), кости ста­новятся прочнее. Правильно дозированная физическая на­грузка замедляет процессы старения костей.

На структуру костной ткани и костей оказывают влияние вита­мины (С, D, А), гормоны щитовидной, околощитовидной и других эндокринных желез.

В частности, при недостаточном количестве витамина С в организме (например, при цинге) подавляется обра­зование коллагеновых волокон, ослабляется деятельность остео­бластов, уменьшается их фосфатазная активность, что практиче­ски приводит к остановке роста кости вследствие невозможности образования костных пластинок вокруг пролиферирующих остео­бластов. В этих условиях в отдельных участках костей значитель­но уменьшается количество солей кальция, что приводит к умень­шению прочности кости.

Рост кости зависит от нормального течения процессов обызвес­твления, который связан с достаточностью уровня каль­ция и фосфора в крови и тканевой жидкости, с наличием необходимого организму количества витамина D. Таким образом, нормальный рост кости зависит от нормального и сбалансированного течения процессов обызвествления и синтеза белка. Обычно эти два процесса протекают в теле человека синхронно и гармонично.

При дефиците витамина D (рахит) не происходит полная кальцификация органической матрицы кости, что приводит к размягчению костей (остеомаляция). В условиях гипервитаминоза А усиливается функция остеокластов и связанная с этим деструкция костей.

Нарушение нормального питания и обмена веществ вызывает изменения в губчатом и компактном веществе костной системы взрослого человека. На протяжении всей жизни в костях происходят процессы обновления остеонов (гаверсовых систем).

Существенное значение для развития и роста костей имеют и эндокринные факторы. Гормон околощитовидной железы паратирин оказывает сильное влияние на рост и состояние костной ткани.

При избытке этого гормона наблюдается резорбция кости и обра­зование фиброзной ткани, содержащей большое количество остео­кластов, что приводит к патологическому состоянию, известному под названием фиброзного остита. Тирокальцитонин щитовидной железы действует диаметрально противоположно паратирину.

При гипофункции щитовидной железы и снижении концентрации йоди­рованных гормонов (тироксин и др.) замедляется рост длинных трубчатых костей в результате подавления активности остеоблас­тов и торможения процесса оссификации. Регенерация кости в этих случаях протекает слабо и неполноценно.

Определенную роль играет и соматотропный гормон гипофиза, под влиянием которого осуществляется синтез белков в костных клетках. В случае тестикулярной недоразвитости или препубертатной кастрации задержи­вается окостенение метаэпифизарной пластинки, вследствие чего руки и ноги у такого индивидуума становятся непропорционально длинными.

При раннем половом созревании отмечается остановка роста из-за преждевременного диафизо-эпифизарного сращения костей. При недостатке эстрогенов после наступления климактери­ческого периода у женщин иногда развивается остеопороз, кото­рый излечивается женскими половыми гормонами.

Другие публикации:

Что такое обследование костной ткани . Костную ткань в организме повышают . Изменения костной ткани при отсутствии зуба . Средства от повышенного уровня андрогенов .

Только у нас: Введите до 31.03.2020 промокод бонус2020 в поле купон при оформлении заказа и получите скидку 25% на всё!

Источник: https://zdorovie-ok.ru/process-vnutrennej-perestrojki-kostnoj-tkani/

Перестройка кости и факторы, влияющие на ее структуру

Процесс внутренней перестройки костной ткани

Скелетные ткани

Регенерация и возрастные изменения в костной ткани

Регенерация костной ткани

Физиологическая регенерация костных тканей происходит медленно за счет остеогенных клеток надкостницы, эндоста и остеогенных клеток в каналах остеонов.

Посттравматическая регенерация костной ткани протекает лучше в тех случаях, когда концы сломанной кости не смещены относительно друг друга, и сохранена надкостница. Процессу остеогенеза предшествует формирование соединительнотканной мозоли, в толще которой могут образовываться хрящевые островки.

Оссификация в этом случае идет по типу вторичного (непрямого) остеогенеза. В условиях оптимальной репозиции и фиксации концов сломанной кости регенерация происходит без образования мозоли. Но прежде чем начнут строить кость остеобласты, остеокласты образуют небольшую щель между репонированными концами кости.

На этой биологической закономерности основано применение травматологами аппаратов постепенного растягивания сращиваемых костей в течение всего периода регенерации.

Перестройка кости и факторы, влияющие на ее структуру

В костной ткани в течение всей жизни человека происходят взаимосвязанные процессы разрушения и созидания, обусловленные функциональными нагрузками и другими факторами внешней и внутренней среды.

Перестройка остеонов всегда связана с разрушением первичных остеонов и одновременным образованием новых остеонов. Под влиянием остеокластов, активизированных различными факторами, костные пластинки остеона разрушаются и на его месте образуется полость.

Этот процесс называется резорбцией (от лат. resorptia — рассасывание) костной ткани. В образовавшейся полости вокруг оставшегося сосуда появляются остеобласты и начинается построение новых пластинок, концентрически наслаивающихся друг на друга.

Так возникают вторичные генерации остеонов. Между остеонами располагаются остатки разрушенных остеонов прежних генераций – вставочные пластинки.

Среди факторов, влияющих на перестройку костной ткани, существенную роль играет ее так называемый пьезоэлектрический эффект. Оказалось, что в костной пластинке при изгибах появляется определенная разность потенциалов между вогнутой и выпуклой стороной.

Вогнутая сторона заряжается отрицательно, а выпуклая — положительно.

На отрицательно заряженной поверхности всегда отмечаются активация остеобластов и процесс аппозиционного новообразования костной ткани, а на положительно заряженной, напротив, наблюдается ее резорбция с помощью остеокластов.

Искусственное создание разности потенциалов приводит к такому же результату. Нулевой потенциал, отсутствие физической нагрузки на костную ткань (например при продолжительной иммобилизации, пребывании в состоянии невесомости) обусловливают повышение функции остеокластов и деминерализацию костей.

На структуру костной ткани и костей оказывают влияние витамины (С, A, D), гормоны щитовидной, околощитовидной и других эндокринных желез.

В частности, при недостаточном количестве витамина С в организме подавляется созревание коллагеновых волокон, ослабляется деятельность остеобластов, уменьшается их фосфатазная активность, что приводит к остановке роста кости.

При дефиците витамина D не происходит полной кальцификации органической матрицы кости, что обусловливает размягчение костей.

Витамин А поддерживает рост костей, но избыток этого витамина способствует усилению разрушения остеокластами метаэпифизарных хрящей.

При избытке гормона околощитовидной железы — паратирина — наблюдаются повышение активности остеокластов и резорбция кости. Тирокальцитонин, вырабатываемый щитовидной железой, действует противоположно.

При гипофункции щитовидной железы замедляется рост длинных трубчатых костей в результате подавления активности остеобластов и торможения процесса оссификации.

Регенерация кости в этом случае происходит слабо и неполноценно.

Определенную позитивную роль в росте костей имеет соматотропный гормон гипофиза (гормон роста), который стимулирует пропорциональное развитие скелета в молодом возрасте и непропорциональное у взрослых (акромегалия).

Возрастные изменения

Соединительные ткани с возрастом претерпевают изменения в строении, количестве и химическом составе. С возрастом увеличиваются общая масса соединительнотканных образований. Во многих разновидностях соединительнотканных структур изменяется соотношение типов коллагена, гликозаминогликанов; в частности, в них становится больше сульфатированных соединений.

Некоторые термины из практической медицины:

· остеопороз (возрастной, гормональный, ..) — дистрофия костной ткани с перестройкой ее структуры, характеризующаяся уменьшением числа костных перекладин в единице объема кости, истонченном, искривлением и полным рассасыванием части этих элементов;

· остеофит, экзофит — патологический костный нарост на поверхности кости;

· остеохондроз — дистрофический процесс в костной и хрящевой ткани;

Дата добавления: 2015-10-19; просмотров: 1536 | Нарушение авторских прав | Изречения для студентов

Источник: https://lektsii.org/2-88004.html

Лечение Костей
Добавить комментарий