Схема клетки костной ткани

Схема клетки костной ткани

Схема клетки костной ткани
Только у нас: Введите до 31.03.2020 промокод бонус2020 в поле купон при оформлении заказа и получите скидку 25% на всё!

Она состоит из эпифизов и диафиза. С наружи диафиз покрыт надкостницей, или периостом (рис. 6-3).

В надкост­нице разли­чают два слоя: наружный(волокнистый) – образо­ван в основном волокнистой соедини­тельной тканью и внут­ренний (клеточ­ный) – содержит клетки остеобласты.

Через надкостницу проходят питающие кость сосуды и нервы, а также под разными углами проникают коллагеновые во­локна, которые получили название прободающих во­локон. Чаще всего эти волокна разветвляются только в наружном слое об­щих пластинок.

Надкостница связывает кость с окру­жающими тканями и принимает участие в ее трофике, разви­тии, росте и регенерации.

Костные ткани, их классификация. Характеристика клеток и межклеточного вещества. Ретикулофиброзная костная ткань. Строение пластинчатой костной ткани на примере диафиза трубчатой кости. Кость как орган. Возрастные особенности костных тканей

Костные ткани — специализированный тип соединитель­ной ткани с высокой минерализацией межклеточного веще­ства. Из этих тканей построены кости скелета.

Характеристика клеток и межклеточного вещества

Костные ткани состоят из:

1) Остеоциты – преобладающие по количеству клетки костной ткани, утратившие способность к делению. Они имеют отростчатую форму, бедны органеллами. Располага­ются в костных полостях, или лакунах, которые повторяют контуры остеоцита. Отростки остеоцита проникают в ка­нальцы кости и играют роль в ее трофике.

2) Остео­бласты – молодые клетки, создающие костную ткань. В кости они встречаются в глубоких слоях надкост­ницы, в местах образования и регенерации костной ткани. Эти клетки бывают различной формы (кубической, пира­ми­дальной или угловатой), содержат одно ядро, а в цитоплазме хорошо развитую гранулярную эндоплазматическую сеть, митохондрии и комплекс Гольджи.

3) Остеокласты – клетки, способные разрушить обыз­вествленный хрящ и кость. Они имеют крупные размеры (диаметр их достигает 90 мкм), содержат от 3 до нескольких десятков ядер. Цитоплазма слабобазофильна, богата мито­хондриями и лизосомами. Гранулярная эндоплазматическая сеть развита относительно слабо.

Б. Межклеточного вещества, состоящего из:

основного вещества, где содержится относительно не­большое количество хондроитинсерной кислоты и много ли­монной и других кислот, образующих комплексы с кальцием (аморфный фосфат кальция, кристаллы гидроксиапатита).

коллагеновых волокон, образующих не­большие пучки.

В зависимости от расположения коллагеновых волокон в межклеточном веществе костные ткани классифициру­ются на:

1. Ретикулофиброзную костную ткань. В ней коллаге­новые волокна имеют беспорядочное расположение. Такая ткань встречается главным образом у зародышей. У взрос­лых ее можно обнаружить на месте черепных швов и в мес­тах прикрепления сухожилий к костям.

2. Пластинчатую костную ткань. Это наиболее рас­пространенная разновидность костной ткани во взрослом ор­ганизме.

Она состоит из костных пластинок, образованных костными клетками и минерализованным аморфным вещест­вом с коллагеновыми волокнами, ориентирован­ными в опре­деленном направлении.

В соседних пластинках волок­на обычно имеют разное направление, благодаря чему достига­ется большая прочность пластинчатой костной ткани. Из этой ткани построены компактное и губчатое вещество большинства плоских и трубчатых костей скелета.

Ретикулофиброзная костная ткань

В ней коллаге­новые волокна имеют беспорядочное расположение. Такая ткань встречается главным образом у зародышей. У взрос­лых ее можно обнаружить на месте черепных швов и в мес­тах прикрепления сухожилий к костям.

Строение пластинчатой костной ткани на примере диафиза трубчатой кости

Это наиболее рас­пространенная разновидность костной ткани во взрослом ор­ганизме.

Она состоит из костных пластинок, образованных костными клетками и минерализованным аморфным вещест­вом с коллагеновыми волокнами, ориентирован­ными в опре­деленном направлении.

В соседних пластинках волок­на обычно имеют разное направление, благодаря чему достига­ется большая прочность пластинчатой костной ткани. Из этой ткани построены компактное и губчатое вещество большинства плоских и трубчатых костей скелета.

Кость как орган

Кость – самостоятельный орган, состоит из тканей, главная – костная.

Гистологическое строение трубчатой кости

Она состоит из эпифизов и диафиза. С наружи диафиз покрыт надкостницей, или периостом (рис. 6-3). В надкост­нице разли­чают два слоя: наружный(волокнистый) – образо­ван в основном волокнистой соедини­тельной тканью и внут­ренний (клеточ­ный) – содержит клетки остеобласты.

Через надкостницу проходят питающие кость сосуды и нервы, а также под разными углами проникают коллагеновые во­локна, которые получили название прободающих во­локон. Чаще всего эти волокна разветвляются только в наружном слое об­щих пластинок.

Надкостница связывает кость с окру­жающими тканями и принимает участие в ее трофике, разви­тии, росте и регенерации.

Компактное вещество, образующее диафиз кости, со­стоит из костных пластинок, располагающихся в опре­делен­ном порядке, образуя три слоя:

наружный слой общих пластинок. В нем пластинки не об­разуют полных колец вокруг диафиза кости. В этом слое залегают прободающие каналы, по которым из надкостницы внутрь кости входят сосуды.

средний, остеонный слой — образо­ван концентрически на­слоенными вокруг сосудов кост­ными пластинками. Такие структуры называются остеонами, а пластинки, их обра­зующие — остеонные пластинки.

Остеоны являются струк­турной единицей компактного вещества трубчатой кости. Каждый остеон отграничен от соседних остеонов так назы­ваемой спайной линией. В цент­ральном канале остеона про­ходят кровеносные сосуды с сопровож­дающей их соедини­тельной тканью.

Все остеоны в основном расположены па­раллельно длинной оси кости. Каналы остеонов анастомози­руют друг с другом. Сосуды, расположенные в каналах ос­теонов, сообщаются друг с другом, с сосудами костного мозга и надкостницы.

Кроме пластинок остеонов в этом слое располагаются также вста­вочные пластинки (остатки ста­рых разрушенных остеонов),которые лежат между остео­нами.

внутренний слой общих пластинок хорошо развит толь­ко там, где компактное вещество кости непосредственно граничит с костномозговой полостью.

Изнутри компактное вещество диафиза покрыто эндо­стом, имеющем такое же строение, как и периост.

Рис. 6-3. Строение трубчатой кости. А. Надкостница. Б. Компакное вещество кости. В. Эндост. Г. Костномозговая полость. 1. Наружный слой общих пластинок. 2. Остеонный слой. 3. Остеон. 4. Канал остеона. 5. Вставочные пластинки.

6. Внутренний слой общих пластинок. 7. Костная трабекула губчатой ткани. 8. Волокнистый слой надкостницы. 9. Кровеносные сосуды надкостницы. 10. Прободающий канал. 11. Остеоциты. (Схема по В. Г. Елисееву, Ю. И. Афанасьеву).

Ссылки по теме:

Изменение костной ткани у детей .   Почему убывает костная ткань в челюсти .   Если от зубов уходит костная ткань .  

Только у нас: Введите до 31.03.2020 промокод бонус2020 в поле купон при оформлении заказа и получите скидку 25% на всё!

Источник: https://zdorovie-ok.ru/shema-kletki-kostnoj-tkani/

Наши кости состоят из чего

Схема клетки костной ткани

Многие годы пытаетесь вылечить СУСТАВЫ?

Глава Института лечения суставов: «Вы будете поражены, насколько просто можно вылечить суставы принимая каждый день средство за 147 рублей

Читать далее »

По химическому составу костная ткань состоит из 70% неорганических и из 30% органических веществ. Неорганические вещества  представлены в большей степени солями кальция. Такое соотношение веществ позволяет скелету человека быть одновременно крепким и пластичным. Ведь ежедневно человеческий организм подвергается различным воздействиям со стороны внешней среды.

НАШИ ЧИТАТЕЛИ РЕКОМЕНДУЮТ!

Для лечения суставов наши читатели успешно используют Sustalaif. Видя, такую популярность этого средства мы решили предложить его и вашему вниманию.
Подробнее здесь…

При снижении процентного содержания органических веществ структура ткани становится хрупкой и ломкой, что может приводить к ее разрушению даже при незначительных воздействиях. Если снижается доля минеральных веществ, скелет может потерять свою прочность.

Образована костная ткань клеточными элементами и межклеточным веществом, так называемым костным матриксом.

Костный матрикс

Межклеточное вещество состоит из балластной субстанции  и органических волокон. Волокна строятся из нитей коллагена 1, 2 типов. Они образуют связки, которые в костях залегают параллельно длиннику кости или хаотично, в зависимости от конкретной функции данной структуры. Балластная субстанция содержит в своем составе гликозаминогликаны и протеогликаны.

Справка. Протеогликаны — это сложные белки, которые по химическому строению состоят из белковой части и углеводного компонента. Гликозаминогликаны — сложные высокомолекулярные углеводы, которые, как правило, входят в состав протеогликанов.

В соединительной ткани содержится много органических и неорганических кислот, которые, образуя комплексы с кальцием, формируют соляные кристаллы. Они откладываются в балластной субстанции и в органических волокнах, что обеспечивает прочность ткани и защищает ее от механических травм.

Клетки костной ткани

К основным клеточным элементам ткани относят остеобласты, остеоциты, остеокласты.

Основными клетками костной ткани являются остеоциты. Они имеют отростчатую форму с ярко выраженным ядром и небольшим количеством цитоплазмы. Основная задача остеоцитов — осуществлять выход веществ из клеток в межклеточную жидкость. Остеоциты образуются из остеобластов, после чего деление этих клеток прекращается.

Остеобласты относятся к синтезирующим и белоксекретирующим клетками. Рибосомы этих клеток синтезируют коллаген и сложные белки, после чего эти компоненты выходят в межклеточное пространство. За счет этих соединений формируется органическая составляющая скелетной соединительной ткани.

Справка. Рибосомы — это белоксинтезирующие органеллы клетки. Они располагаются на шероховатой части эндоплазматического ритикулума и продуцируют белки, считывая информацию с клеточной ДНК. Синтез клеточного белка — сложнейший процесс, который происходит в несколько этапов.

Через клеточную мембрану остеобластов в межклеточный матрикс проникают соли кальция, благодаря чему происходит минерализация балластного вещества и связок органических волокон.

Остеобласты располагаются в ростковом слое надкостницы и пребывают в неактивном состоянии. В случае нарушения целостности ткани эти клетки активируются и начинают синтезировать ее новые компоненты. За счет работы остеобластов восстанавливается целостность костей в случае их повреждения.

Остеокласты — это костеразрушающие клетки. Они представляют собой крупные клеточные элементы с большим количеством ядер и специализированных органелл.  Основная задача этих клеток —  рассасывание ткани.

Это происходит за счет наличия в цитоплазме многочисленных лизосом и ферментсодержащих вакуолей. Эти клетки препятствуют избыточному росту кости.

При повреждении ткани остеобласты лизируют разрушенные участки, освобождая место новым клеткам.

Что такое клетка

Давайте, прежде всего, разберемся с самим значением данного термина.

Клетка – это элементарная частица в живом организме. Но пусть это определение не вводит вас в заблуждение: строение клетки далеко не простое.

Защитную оболочку клетки называют мембраной. В цитоплазме находятся органеллы, выполняющие различные жизненно важные  функции:

  • Митохондрии обеспечивают клетку энергией
  • В рибосомах происходит синтез белков,
  • Эндоплазматическая сеть транспортирует вещества.

Центром или «мозгом» клетки, откуда и происходит все функциональное управление, является ядро.

Упрощенная схема клетки

Структурные особенности

Учёные занимаются изучением особенности строения клетки и принципов ее работы. Детально рассмотреть особенности структуры клетки можно только при помощи мощного микроскопа.

Все наши ткани — кожные покровы, кости, внутренние органы состоят из клеток, которые являются строительным материалом, бывают разных форм и размеров, каждая разновидность выполняет определённую функцию, но основные особенности их строения сходны.

Сначала выясним, что лежит в основе структурной организации клеток. В ходе проведенных исследований ученые установили, что клеточным фундаментом является мембранный принцип. Получается, что все клетки образованы из мембран, которые состоят из двойного слоя фосфолипидов, куда с наружной и внутренней стороны погружены молекулы белков.

Какое свойство характерно для всех типов клеток: одинаковое строение, а также функционал — регулирование процесса обмена веществ, использование собственного генетического материала (наличие ДНК и РНК), получение и расход энергии.

В основе структурной организации клетки выделяются следующие элементы, выполняющие определенную функцию:

  • мембрана — клеточная оболочка, состоит из жиров и протеинов. Ее основная задача – отделять вещества, находящиеся внутри, от внешней среды. Структуру имеет полупроницаемую: способна пропускать кислород и оксид углерода;
  • ядро – центральная область и главный компонент, отделяется от других элементов мембраной. Именно внутри ядра находится информация о росте и развитии , генетический материал, представленный в виде молекул ДНК, входящих в состав хромосом;
  • цитоплазма — это жидкая субстанция, образующая внутреннюю среду, где происходят разнообразные жизненно важные процессы, содержит в себе очень много важных компонентов.

Из чего состоит клеточное содержимое, каковы функции цитоплазмы и ее основных компонентов:

  1. Рибосома — важнейший органоид, который необходим для процессов биосинтеза белков из аминокислот, белки выполняют огромное количество жизненно важных задач.
  2. Митохондрии – ещё один компонент, находящийся внутри цитоплазмы. Его можно описать одним словосочетанием – энергетический источник. Их функция заключается в обеспечении компонентов питанием для дальнейшего производства энергии.
  3. Аппарат Гольджи состоит из 5 – 8 мешочков, которые соединены между собой. Основная задача этого аппарата – передача протеинов в другие части клетки для обеспечения энергетического потенциала.
  4. Очистку от повреждённых элементов производят лизосомы.
  5. Транспортировкой занимается эндоплазматическая сеть, по которой белки перемещают молекулы полезных веществ.
  6. Центриоли отвечают за воспроизводство.

Ядро

Поскольку ядро — клеточный центр, поэтому следует уделить его строению и функциям особое внимание. Данный компонент является важнейшим элементом для всех клеток: содержит наследственные признаки. Без ядра стали бы невозможными процессы размножения и передачи генетической информации. Посмотрите на рисунок, изображающий строение ядра.

  • Ядерная оболочка, которая выделена сиреневым цветом, пропускает внутрь нужные веществам и выпускает обратно через поры — маленькие отверстия.
  • Плазма представляет собой вязкую субстанцию, в ней находятся все остальные ядерные компоненты.
  • ядро размещается в самом центре, имеет форму сферы. Его главная функция – образование новых рибосом.
  • Если рассмотреть центральную часть клетки в разрезе, то можно увидеть малозаметные синие переплетения — хроматин, главное вещество, который состоит из комплекса белков и длинных нитей ДНК, несущих в себе необходимую информацию.

Клеточная мембрана

Давайте подробнее рассмотрим работу, строение и функции этого компонента. Ниже представлена таблица, наглядно показывающая важность внешней оболочки.

Хлоропласты

Это ещё один наиважнейший компонент. Но почему о хлоропластах не было упомянуто раньше, спросите вы. Да потому, что этот компонент содержится только в клетках растений. Главное различие между животными и растениями заключается в способе питания: у животных оно гетеротрофное, а у растений автотрофное.

Это означает, что животные не способны создавать, то есть синтезировать органические вещества из неорганических – они питаются готовыми органическими веществами. Растения же, напротив, способны осуществлять процесс фотосинтеза и содержат особые компоненты — хлоропласты. Это пластиды зеленого оттенка, содержащие вещество хлорофилл.

С его участием энергия света преобразуется в энергию химических связей органических веществ.

Если вам зададут вопрос: назовите важную особенность строения органических соединений клетки, то ответ можно дать следующий.

  • многие из них содержат атомы углерода, которые обладают различными химическими и физическими свойствами, а также способны соединяться друг с другом;
  • являются носителями, активными участниками разнообразных процессов, протекающих в организмах, либо являются их продуктами. Имеются ввиду гормоны, разные ферменты, витамины;
  • могут образовывать цепи и кольца, что обеспечивает многообразие соединений;
  • разрушаются при нагревании и взаимодействии с кислородом;
  • атомы в составе молекул объединяются друг с другом с помощью ковалентных связей, не разлагаются на ионы и потому медленно взаимодействуют, реакции между веществами протекают очень долго — по нескольку часов и даже дней.

Источник: https://artrit.asustav.ru/lechenie/nashi-kosti-sostoyat-iz-chego/

Костная ткань и как она устроена

Схема клетки костной ткани

Скелет представляет основу, которая помогает телу держать форму, защищать органы, перемещаться в пространстве и многое другое.

В общем, строение клеток костной, как и любой ткани, весьма специализированно, за счет чего есть прочность к механическому воздействию, а вместе с ней пластичность, параллельно с этим происходят процессы регенерации.

К тому же клетки находятся в строго определенном взаиморасположении, благодаря чему костная, а не другая ткань, намного прочнее соединительной. Основными составляющими костной ткани являются остеобласты, остеокласты, а также остеоциты.

Именно эти клетки поддерживают свойства ткани, обеспечивая ее гистологическое строение. Какой же секрет этих трех клеток, которые имеет в своем составе кость, определяя многие функции.

Ведь прочнее кости только зубы, которые содержат в себе альвеолы челюсти. Через кости проходят сосуды, нервы, как в черепе, они содержат в себе мозг, являющийся источником кроветворения, и защищают внутренние органы.

Покрытые сверху хрящевой прослойкой, они обеспечивают нормальное передвижение.

Остеобласт, что он собой представляет

Строение этой клетки специфическое, она представляет собой видимое под микроскопом овальное или кубическое образование. Лабораторная техника показала, что внутри цитоплазмы ядро у остеобласта крупное, светлого цвета, расположено не центрально, а несколько в сторону периферии.

Рядом есть парочка ядрышек, это свидетельствует о том, что клетка способна синтезировать многие вещества. Также она имеет много рибосом, органелл, за счет которых и происходит синтез веществ.

Также в этом процессе участвует гранулярная эндоплазматическая сеть, комплекс Гольджи, который выводит продукты синтеза наружу.

За то, какое будет энергетическое обеспечение, отвечают многочисленные митохондрии. На них лежит большая работа, много их содержится в мышечной ткани. А вот в хрящевой, грубоволокнистой соединительной ткани, в отличие от мышечной, митохондрий намного меньше.

Функции клетки

Основная работа клетки состоит в том, чтобы производить межклеточное вещество. Также они обеспечивают минерализацию костной ткани, за счет этого она имеет особую прочность.

Дополнительно клетки участвуют в синтезе многих важных ферментов костной ткани, основным из которых является щелочная фосфатаза, коллагеновые особой прочности волокна и многое другое.

Ферменты, покидая пределы клетки, обеспечивают минерализацию кости.

Разновидности остеобластов

Помимо того, что строение клеток специфично, они функционально активны в различной степени. Активные имеют высокую синтетическую способность, а вот неактивные находятся в периферической части кости. Последние расположены возле канала кости, являются частью надкостницы, оболочки, покрывающей кость. Строение их сводится к небольшому количеству органелл.

Остеоцит, его строение

Эта клетка костной ткани является более дифференцированной, чем предыдущая.

Есть у остеоцита отростки, которые находятся в канальцах, проходящих сквозь минерализованный матрикс кости, направление их различное.

Плоское тело расположено в углублении – лакунах, со всех сторон окружено минерализованной составляющей. В цитоплазме имеется ядро овальной формы, занимающее практически весь ее объем.

Слабое развитие имеют органеллы, небольшое количество рибосом, каналы эндоплазматической сети короткие, митохондрии, в отличие от мышечной, хрящевой ткани, немногочисленны.

Через каналы, имеющие лакуны, клетки могут взаимодействовать друг с другом. Микроскопическое пространство вокруг клетки имеет скудное количество тканевой жидкости.

В ней есть ионы кальция, остатка, фосфора, коллагеновые волокна (минерализированные или нет).

Функция

Задача клетки состоит в том, чтобы регулировать целостность костной ткани, участвовать в минерализации. Также функции клетки состоят в том, чтобы отвечать на возникающую нагрузку.

В последнее время все более популярным становится тот факт, что клетки участвуют в процессах метаболизма костной ткани, в том числе и челюсти.

Есть предположение о том, что работа клетки состоит дополнительно в том, чтобы регулировать ионный баланс организма.

Во многом функции остеоцитов зависят от стадии цикла жизни, как хрящевой, мышечной ткани, а также воздействия гормонов на них.

Остеокласт, его секрет

Эти клетки значительных размеров, содержат много ядер, по своей сути, это производные кровяных моноцитов. По периферии клетка имеет гофрированную щеточную каемку. В цитоплазме клетки есть много рибосом, митохондрий, развиты канальцы эндоплазматической сети, а также комплекс Гольджи. Также клетка содержит большое число лизосом, фагоцитирующих органелл, всевозможных вакуолей, пузырьков.

Задачи

Эта клетка имеет свои задачи, она может создавать вокруг себя кислую среду в результате биохимических реакций в ткани кости. В результате растворяются минеральные соли, после чего ферментами и лизосомами старые или отмершие клетки растворяются и перевариваются.

Таким образом, работа клетки состоит в том, чтобы постепенно разрушать устаревшую ткань, но при этом обновляется строение костной ткани. В результате на ее месте появляется новая, за счет чего обновляется костная структура.

Другие компоненты

Несмотря на свою прочность (как у бедра или нижней челюсти), в кости присутствуют органические вещества, которые дополняются неорганическими. Органическая составляющая представлена на 95% коллагеновыми белками, остальное количество занимают неколлагеновые, а также гликозминогликаны, протеогликаны.

Неорганическая составляющая костной ткани представляет собой кристаллы вещества, называемого гидроксиапатитом, содержащем в большом количестве ионы кальция, а также фосфора. Меньше в пластинчатой структуре кости содержится солей магния, калия, фторидов, бикарбонатов. Постоянно происходит обновление пластинчатой структуры, межклеточного вещества вокруг клетки.

Разновидности

Всего костная ткань имеет два типа, все зависит от микроскопического ее строения. Первая называется ретикулофиброзной или грубоволокнистой, вторая — пластинчатой. Рассмотрим каждую в отдельности.

У эмбриона, новорожденного

Ретикулофиброзная широко представлена у эмбриона, ребенка после появления на свет. У взрослого же человека много соединительной ткани, а эта разновидность встречается только в месте, где сухожилие прикреплено к кости, в месте соединения швов на черепе, в линии перелома. Постепенно ретикулофиброзная ткань заменяется пластинчатой.

Имеет эта костная ткань особое строение, ее клетки расположены неупорядоченно в межклеточном веществе. Коллагеновые волокна, являющиеся разновидностью соединительной ткани, мощные, плохо минерализованы, направление имеют различное. Ретикулофиброзная кость имеет большую плотность, но клетки не имеют ориентации по соединительной ткани коллагеновых волокон.

У взрослого

Когда младенец вырос, его кость содержит в основном пластинчатую костную ткань.

Эта разновидность интересна тем, что минерализованным межклеточным веществом образованы костные пластинки, имеющие толщину от 5 до 7 мкм.

Любая пластина состоит из коллагеновых волокон соединительной ткани, расположенных параллельно, максимально близко, а также пропитанных кристаллами специального минерала – гидроксиаппатита.

В соседних пластинах волокна соединительной ткани проходят под разным углом, это обеспечивает прочность, к примеру в бедре или челюсти. Лакуны или альвеолы между пластинами в упорядоченном порядке содержат клетки кости – остеоциты. Их отростки по канальцам проникают в рядом расположенные пластины, за счет чего образуются межклеточные контакты соседних клеток.

Есть некоторые системы пластинок:

  • окружающие (наружные или расположенные изнутри);
  • концентрические (входящие в структуру остеона);
  • вставочные (остаток разрушающегося остеона).

Строение кортикального, губчатого слоя

В основе этого слоя находятся минеральные соли, в челюсти именно сюда через альвеолы вживляются импланты. Базальный слой расположен наиболее глубоко, является наиболее прочным, есть в челюсти много перегородок, пронизанных капиллярами, их же немного.

В центральном отделе находится губчатое вещество, в его строении есть некоторые тонкости. Построено оно из перегородок, капилляров. За счет перегородок кость имеет плотность, а по капиллярам она получает кровь. Их функции в челюсти заключаются в питании зубов, насыщении кислородом.

В костях организма, в том числе челюсти, которая содержит альвеолы, есть компактное, а потом следующее за ним губчатое вещество. Обе эти составляющие имеют несколько разное строение, но образованы тканью пластинчатого типа.

Компактное вещество расположено снаружи, к нему идет прикрепление мышечной, хрящевой или соединительной ткани.

Его функции сводятся к тому, чтобы придать кости плотность, как, к примеру, на челюсти, альвеолы которой несут нагрузку от пережевывания пищи.

Губчатое вещество расположено внутри любой кости, в том числе челюсти, в нижней части его содержат альвеолы. Его функции  сводятся к дополнительному укреплению кости, в придании ей пластичности, эта часть является вместилищем костного мозга, который продуцирует клетки крови.

Немного фактов

Всего у человека содержится от 208 до 214 костей, которые состоят наполовину из неорганической составляющей, четверть приходится на органические вещества, а еще четверть — на воду. Все это связано между собой соединительной тканью, коллагеновыми волокнами и протеогликанами.

В составе кости есть органическая составляющая, как в мышечной, соединительной или хрящевой ткани, всего от 20 до 40%. Доля неорганических минералов занимает от 50 до 70%, клеточные элементы содержатся от 5 до 10%, а жиры – 3%.

Вес скелета человека составляет в среднем 5 кг, много зависит от возраста, половой принадлежности, количества соединительной ткани, строения тела и показателей роста. Количество кортикальной кости составляет в среднем 4 кг, это составляет 80%. Губчатое вещество трубчатых костей, челюсти и других весит где-то килограмм, что составляет 20%. Объем скелета равняется 1,4 литра.

Кость в скелете человека представляет собой отдельный орган, который может иметь свои определенные проблемы. Именно в костях часто всего случаются травмы, которые в зависимости от типа имеют различные сроки заживления.

Если смотреть на кость невооруженным взглядом, то становится понятно, что каждая из них отличается по своей форме.

Это связано с тем, какие функции она выполняет, какая нагрузка на нее воздействует, сколько мышц прикрепляется.

Кости позволяют человеку перемещаться в пространстве, они являются защитой для внутренних органов. И чем более важен орган, тем сильнее он окружен костями.

С возрастом способность к восстановлению снижается и перелом срастется медленнее, клетки теряют способность к быстрому делению. Это доказывают микроскопические исследования, а также свойства костной ткани.

Снижается степень минерализации коллагеновых волокон, поэтому травмы протекают длительнее.

Источник: http://drpozvonkov.ru/ossa-musculi-ligamentorum/os-morbus/stroenie-kostnoy-tkani.html

Метаболизм кости: как происходят процессы в костной ткани

Схема клетки костной ткани

ОСТЕОГЕНЕЗ (костеобразование) — процесс формирования костей у позвоночных. Осуществляется при помощи специальных клеток (остеобластов), выделяющих костеобразующие минеральные вещества, которые объединяются с сетью коллагеновых волокон, в результате чего образуется основное вещество твердых костей.

РЕЗОРБЦИЯ (от лат. resorbeo — поглощаю) — рассасывание, растворение (разрушение).

Термины:

Костная ткань – вид соединительной ткани, из которой образуются все кости в человеческом организме. Состоит из особых клеток (остеобластов, остеокластов, остеоцитов) и межклеточного вещества.

Межклеточное вещество (костный матрикс) составляет 50% сухого веса костной ткани и состоит из органической (25%), неорганической (50%) частей и воды (25%).

Остеобласты (от др.-греч.: ὀστέον — кость, βλάστη — росток, отпрыск, побег) – молодые клетки костной ткани диаметром 15-20 мкм, располагающиеся в верхних её слоях и вырабатывающие компоненты межклеточного вещества. Проще говоря – клетки-строители костной ткани.

Остеокласты (от др.-греч.: osteon — кость и clao — раздроблять, разбивать) – это крупные многоядерные (5 — 100 ядер) клетки костной ткани размерами до 190 мкм, которые разрушают кость и обызвествлённый хрящ (хрящ с отложениями кальция).

Остеоциты (от др.-греч.: ὀστέον — кость, κύτος — вместилище, здесь — клетка) – основной тип клеток зрелой костной ткани длиной 20-55 мкм и шириной 5-15 мкм. Образуются из остеобластов в процессе развития костной ткани.

Рис. 1. Клетки костной ткани

а — остеобласт; б — остеоцит; в — остеокласт; 1 — ядро; 2 — гранулярная эндоплазматическая сеть; 3 — митохондрии; 4 — комплекс Гольджи; 5 — гофрированная каемка; 6 — лизосомы; 7 — межклеточное вещество кости (по Е. А. Шубниковой с изменениями)

Рис. 2. Схема расположения клеток костной ткани
ОБЛ — остеобласты (активные), КВК — клетки, выстилающие кость (неактивные остеобласты), КЛ — костные лакуны с телами остеоцитов (ОЦ), КК — костные канальцы, содержащие отростки ОЦ, ОКЛ — остеокласт в резорбционной лакуне (РЛ), ОИ — остеоид, ОМВ — обызвествленное межклеточное вещество.

Образование новой кости остеобластамиРассасывание старой кости остеокластами
Пусковой фактор к активизации процессаУсиление насыщения кислородом костной ткани— снижение насыщения кислородом костной ткани; — усиление в остеокластах процесса расщепления глюкозы без участия кислорода, вызывающего накопление солей молочной кислоты (понижают pH среды) и ионов водорода.
С чего начинается процесс1. Формирование органической части   (органического матрикса) кости, который служит каркасом для дальнейшего отложения минералов. Состав органической  части:а) коллагеновые белки (90-95%);б) неколлагеновые белки (их около 200);в) протеогликаны (белки+небольшое количество углеводов) фиксируют ионы кальция в очагах остеогенеза, образуя комплексы с минералом;г) гликозаминогликаны связывают большое количество воды, благодаря чему межклеточное вещество приобретает желеобразную консистенцию.д) вода.2.Синтез аденозинтрифосфорной кислоты(АТФ) — источника энергии для процесса синтеза органического матрикса и донора фосфата для минерализации.3. Активное накопление в митохондриях остеобластов положительно заряженных ионов кальция (кальция в митохондриях в 500 раз больше, чем в цитоплазме остеобластов) и отрицательно заряженных ионов фосфатов.— Повышение проницаемости клеточных оболочек остеобластов.Снижение pH приводит к повышению проницаемости оболочек лизосом (клеточных органоидов остеокластов, в полости которых находится множество ферментов, ускоряющих расщепление органических соединений), освобождению ферментов и их выделению вместе с молочной кислотой и ионами водорода в межклеточный матрикс.
Развитие процессаСобственно минерализация — отложение фосфата и кальция в виде кристаллов гидроксиапатитов в ранее сформированный органический матрикс.Этапы:1. Активное отпочковывание в межклеточный матрикс особых пузырьков (мембранных везикул), содержащих:а) положительно заряженные ионы кальция (концентрация кальция в пузырьках в 25-50 раз выше, чем в остеобластах);б) сложные жиры (глицерофосфолипиды) – нужны для связывания кальция и фосфора с органическим каркасом;в) щелочную фосфатазу (ЩФ) – ей принадлежит ведущая роль в образовании центров кристаллизации гидроксиапатитов и ускорении процесса кристаллизации; также ЩФ ликвидирует вещество, тормозящее процесс минерализации (пирофосфат), расщепляя его.г) другие фосфатазы (пиро-, АТФ-, 5′-АМФ-), необходимые для кальцификации органического матрикса.2. Разрушение оболочек мембранных везикул и освобождение содержимого пузырьков.3. Частичный распад протеогликанов, освобождение кальция и фосфатов и формирование поверхности белков, на которой будет происходить образование кристаллической решётки гидроксиапатитов.4. Формирование ядер кристаллизации гидроксиапатитов. Этот процесс начинается ещё в мембранных везикулах.5. Формирование кристаллической решётки из минералов.6. Рост кристаллов гидроксиапатитов. Растущие кристаллы вытесняют протеогликаны и воду до такой степени, что костная ткань становится практически обезвоженной.В результате местного повышения кислотности происходит распад связей кристаллов гидроксиапатитов с белками межклеточного матрикса, кристаллы разрушаются. Белки разлагаются ферментами. Происходит разрушение межклеточного вещества костной ткани с образованием полостей.
Завершающий этапПо завершении процесса роста кристаллов гидроксиапатитов остеобласты оказываются окружёнными со всех сторон минерализованным матриксом и превращаются в остеоциты, основная задача которых – поддержание стабильности обменных процессов в уже минерализованных отделах костной ткани, т. е. сохранение постоянства её органического и минерального состава. При снижении активной синтетической (созидательной) деятельности остеобластов последние могут также превращаться в покоящиеся остеобласты. Эти клетки покрывают 80-95% покоящейся кости. Группы рядом расположенных покоящихся остеобластов под влиянием паратиреоидного гормона паращитовидных желёз вырабатывают ферменты, разрушающие костную ткань. В результате этого на поверхности костей формируются углубления (ниши резорбции). В этих углублениях в дальнейшем располагаются остеокласты, т. к. костным разрушителям в них легче прикрепиться к костной ткани. Процесс прикрепления остеокласта к костной ткани рассматривается как первый этап в рассасывании (резорбции) кости.Продукты распада белков органического матрикса и кристаллов гидроксиапатитов поступают в кровь, кальций и фосфор с током крови доставляются к остеобластам. Происходит восстановление органического и минерального состава костной ткани.Выполнившие свою работу остеокласты погибают.

О том, как избежать болей в суставах, никто не задумывается – гром-то не грянул, зачем ставить громоотвод. Между тем от артралгии – так называется этот вид боли – страдают половина людей старше сорока лет и 90 % тех, кому больше семидесяти. Так что профилактика боли суставов – то, о чем стоит подумать, даже если вы…

Читать далее

Состояние человека, слаженность работы органов его тела во многом определяются  гормональным балансом. Восстановление хряща также подчинено влиянию вездесущих регуляторов жизни.

Без нормализации гормонального фона полноценная регенерация сустава невозможна.

За какие нити дёргает невидимый кукловод – эндокринная система, воздействуя на хрящевую ткань? Тестостерон Этот гормон вырабатывается половыми железами и корой надпочечников, как в мужском организме, так…

Читать далее

Заботиться о здоровье костей актуально в любом возрасте. Для  детей это важная профилактика рахита, а для взрослых – переломов и остеопороза. Однако спектр продукции для решения этих задач, настолько широк, что потеряться и ошибиться в выборе проще простого. Лучший комплекс витаминов для костей, если верить рекламным роликам, должен насытить кости кальцием и запереть его там…

Читать далееО ЗАБОЛЕВАНИЯХ СОЕДИНИТЕЛЬНОЙ ТКАНИ

Солнечный свет для человека – не только источник хорошего настроения, радости и счастья.

При его попадании на сетчатку глаза и кожу в организме запускается большое количество физиологических процессов, например, синтез кальциферола.

Для чего нужен витамин Д, помимо улучшения всасывания кальция? Как компенсировать его дефицит, если пребывание под ультрафиолетовыми лучами солнца нежелательно для человека? Для чего…

Читать далее  

Источник: https://osteomed.su/metabolizm-kosti/

Гистогенез костной ткани

Схема клетки костной ткани

КОСТНАЯ ТКАНЬ

Эта ткань удовлетворяет схеме общего строения соединительной ткани, ибо она состоит из клеток и минерализованного межклеточного вещества. При этом клетки костной ткани относятся к двум дифферонам.

Дифферон остеобластов

СКМ

(стволовая клетка механоцит, остеогенная)

Преостеобласт

Остеобласт

Остеоцит

Остеогенные клетки бипотентны, поскольку в условиях высокого парциального давления О2 в ткани они превращаются в остеобласты, а при низком – в хондробласты. Морфологически остеогенные клетки соответствуют ранее описанной адвентициальной клетке (периваскулярной). В костной ткани эти клетки локализуются в зоне надкостницы, эндоста и каналах остеонов.

Преостеобласты – это клетки, вступившие на путь дифференцировки, для них характерно наличие большого числа фигур митоза.

Для заметок:

Остеобласты – в морфологическом аспекте представляются гетерогенной группой, в составе которой выделяют следующие 3 типа клеток:

1. Молодые остеобласты;

2. Зрелые остеобласты;

3. Покоящиеся остеобласты.

Молодые остеобласты:

а) округлой формы,

б) ядро крупное (эухроматин),

в) ядро расположено эксцентрично,

г) органеллы развиты хорошо,

д) синтез коллагена и гликозаминогликанов.

Зрелые остеобласты:

а) клетки кубической формы,

б) ядро располагается эксцентрично,

в) клетки поляризованы (по отношению к клеточному матриксу),

г) в клетке умеренно развиты ГЭС и КГ,

д) цитоплазма содержит матриксные пузырьки,

е) синтез коллагена.

Покоящиеся остеобласты:

а) клетки уплощённой формы,

б) редуцированные ГЭС и КГ,

в) в клетке много аутофагосом,

г) поддержание минерального гомеостаза.

Остеоциты:

1. Многоотростчатая клетка;

2. Хорошо развиты элементы цитоскелета;

3. Много лизосом;

4. ГЭС – редуцирована;

5. Клетки формируют транспортную лакунарно-канальцевую систему;

6. Регуляция нормальной трофики кости.

Для заметок:

Остеокласт

Эта клетка является производной стволовой кроветворной клетки, она образуется из моноцитов в результате их слияния с формированием крупной многоядерной клетки.

При световой микроскопии клетка характеризуется :

1. Крупная клетка (до 100 мкм);

2. Содержит большое (до 50) число ядер;

3. Цитоплазма оксифильна;

4. Клетка высоко поляризована.

На электронограммах в клетке выделяют 4 дифференцированные зоны:

1. Зона гофрированной каёмки, которая образована многочисленными различной высоты микроворсинками. Этой зоной остеокласт контактирует с разрушающейся костной тканью;

2. Светлая зона (зона окклюзии), обеспечивает плотное прилегание остеокласта к кости. Фактор адгезии связан с локализацией в этой зоне актиновых филамент и белков интегринов. Всё это обеспечивает герметизацию зоны резорбции;

3. Зона пузырьков и вакуолей – это участок цитоплазмы с лизосомами и фагосомами;

4. Базальная зона – это зона локализации ядер, большого числа митохондрий, комплекса Гольджи и элементов ГЭС.

Механизм разрушения костной ткани представлен на Рис. 48

Рис. 48: Остеокласт и механизм резорбции кости

1. Остеокласт – поляризованная клетка, расположенная в лакуне Хоушипа;

2. Активной поверхностью она ориентирована к кости, эта поверхность называется гофрированная каёмка;

3. Светлая зона – это участок локализации актиновых филамент вместе с интегрином и остеопорином;

4. Цитоплазма клетки нейтральная за счёт обмена бикарбонатхлорида;

5. Карбоангидраза образует протоны (Н+) от взаимодействия СО2 и Н2О. Они выделяются за счёт АТФ-зависимого насоса, делая рН = 4,5 в зоне деминерализации;

6. Лизосомальные (протеиназы и фосфатазы), а также нелизосомальные (металлопротеиназы) ферменты, выделяемые в зону лакуны Хоушипа, разрушают коллаген и неколлагеновые белки.

Для заметок:

Строение кости как органа

Трубчатые кости построены в основном из пластинчатой костной ткани. При этом в зоне диафиза удаётся выделить следующие дифференцированные слои:

1. Надкостница: См. рис. 49

а) наружный слой (фиброзный) – это плотная волокнистая неоформленная соединительная ткань,

б) внутренний слой (остеогенный) – он образован рыхлой волокнистой неоформленной соединительной тканью и содержит остеогенные клетки и остеобласты.

Эта зона обеспечивает рост кости по типу аппозиционного. Надкостница прикрепляется к поверхности кости с помощью коллагеновых (шарпеевских) волокон.

Рис. 49: Схема строения трубчатой кости

2. Слой наружных генеральных пластинок;

3. Остеогенный слой;

4. Слой внутренних генеральных пластинок.

Вся эта система формируется костными пластинками, которые состоят из клеток остеоцитов и межклеточного вещества, последнее образовано коллагеновыми волокнами,ориентированными параллельно, однако в соседних пластинках направление волокон меняется, что обеспечивает костной ткани её выраженную прочность.

В зоне наружного и внутреннего генеральных слоёв костные пластинки располагаются параллельно друг другу по окружности диафиза, между пластинками в лакунах находятся остеоциты.

Для заметок:

Остеогенный слой – это гаверсовы системы, они интерпретируются как морфофункциональные единицы костной ткани. См. рис. 50

Рис. 50: Схема строения остеона

Остеон:

1. Канал остеона (d = 20 – 120 мкм);

2. Костные пластинки (до 25 штук);

3. Остеоциты;

4. Спайная (цементирующая) линия.

Вставочные пластинки – это остатки разрушенных в результате перестройки кости остеонов.

Для заметок:

Гистогенез костной ткани

I. Развитие кости из мезенхимы

1. Образование остеогенного островка (мезенхима);

2.Дифференцировка клеток остеогенного островка (образование остеобластов);

3. Формирование остеоида (синтез межклеточного вещества);

4. Образование остеоида;

5. Слияние костных трабекул;

6. Формирование надкостницы (мезенхима);

7. Образование грубоволокнистой костной ткани. См. рис. 51

Рис. 51: Схема интрамембранной оссификации

II. Развитие кости на месте гиалинового хряща

1. Формирование хрящевой модели кости;

2. Перихондральная костная манжетка:

а) появление в надхрящнице остеобластов,

б) синтез грубоволокнистой костной ткани (схема дана раньше),

в) формирование манжетки,

г) замена грубоволокнистой ткани на пластинчатую.

3. Формирование эндохондральной кости в зоне диафиза:

а) дистрофические изменения хрящевой ткани,

б) врастание остеогенных клеток в зону хряща (хондрокласты),

в) дифференцировка остеогенных клеток в остеобласты,

г) образование первичной точки окостенения.

4. Формирование эндохондральной кости в эпифизах по схеме, описанной выше;

5. Эпифизарная пластинка роста:

а) зона сохранившегося хряща,

б) пролиферативная зона (столбики хондроцитов),

в) зона гипертрофированного хряща,

г) зона обызвествленного хряща.

Для заметок:

Дата добавления: 2017-09-19; просмотров: 1377; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

ПОСМОТРЕТЬ ЁЩЕ:

Источник: https://helpiks.org/9-32499.html

Лечение Костей
Добавить комментарий