Структурной единицей костной ткани является

Билет 6. Костные ткани. Морфо-функциональная характеристика и классификация

Структурной единицей костной ткани является

Костные ткани. Морфо-функциональная характеристика и классификация. Их развитие, строение, роль клеточных элементов и межклеточного вещества. Возрастные изменения.

Артерии. Морфо-функциональная характеристика. Классификация, развитие, строение, функция артерий. Взаимосвязь структуры артерий и гемодинамических условий. Возрастные изменения.

Билет 5.

Артерии, по которым кровь течет от сердца к органам. Они бывают трех типов: эластические, мышечные, смешанного типа (мышечно-эластические).

Артерии эластического типа – аорта и легочная артерия, по которым кровь оттекает от сердца под большим давлением и с большой скоростью. Это артерии крупного калибра, содержат повышенное количество эластических компонентов (волокон и мембран).

Строение стенки артерии эластическо­го типа:

Внутренняя оболочка включает эндотелий, подэндотелиальный слой и сплетение эластических волокон.

Толщина подэндотелиального слоя довольно значительная, в нем содержатся гладкие миоциты, много эластических волокон, клетки соединительной ткани богаты гликогеном и ферментами, а в аморфном веществе содержится большое количество гликозаминогликанов и фосфолипидов, трофика внут­ренней оболочки осуществляется диффузно из протекающей внутри крови.

С возрастом в межклеточном веще­стве подэндотелиального слоя накапливаются жирные кислоты и холестерин, что может привести к развитию атеросклероза. В сплетении эластических волокон на границе со средней оболочкой различают внутренний цир­кулярный и наружный продольный слои.

Средняя оболочка состоит из большого количества окончатых эластических мембран, связанных ме­жду собой эластическими волокнами и образующих единый эластический каркас.

Наружная оболочка, предохраняющая сосуд от перерастяжения и разрывов, построена из рыхлой волокни­стой соединительной ткани с большим количеством толстых эластических и коллагеновых волокон, имеющих в основном продольное направление. Здесь содержатся нервы и кровеносные сосуды, питающие большую часть средней и всю наружную оболочку артерии.

Артерии смешанного типа (мышечно-эластические) занимают по строению и функции промежуточное по­ложение между артериями эластического и мышечного типа. К ним относятся, например, сонная и подключич­ная артерии

Стенка сосудов этого типа обладает как высокой эластичностью, так и спо­собностью сильно сокращаться.

Артерии мышечного типа – большинство артерий среднего и мелкого калибра (артерии тела, конечностей и внутренних органов).

Просвет артерий уменьшается при сокращении их гладкой мускулатуры, что делает воз­можным регуляцию кровотока к разным органам и тканям (в зависимости от потребностей организма).

Сокра­щение гладких миоцитов и, соответственно, регуляция просвета артерий данного типа контролируется симпати­ческим отделом вегетативной нервной системы.

Костная ткань – специализированный вид соединительной ткани с очень высокой степенью минерализации межклеточного вещества.

Костная ткань .развивается из мезенхимы двумя способами: непосредственно из мезенхимы (прямой остеогенез) либо на месте сформированного ранее гиалинового хряща (непрямой остеогенез).

Костная ткань, как и все разновидности соединительной, состоит из клеток и межклеточного вещества. Клетки кости – остеобласты, остеоциты и остеокласты. В составе межклеточного вещества – оссеиновые волокна (коллагеновые волокна 1-го типа) и основное вещество(содержит неколлагеновые белки, липиды, гликопротеиды, гликозаминогликаны и протеогликаны).

В ходе развития костной ткани образуются два дифферона:

стволовая скелетогенная клетка – полустволовая клетка (преостеобласт) – остеобласт – остеоцит; – стволовая клетка крови – моноцитарный дифферон – преостеокласт – остеокласт

Остеобласты – молодые клетки, создающие межклеточное вещество кости. В образующейся кости они по­крывают почти всю поверхность костной балки.

В сформированной кости остеобласты встречаются только в глубоких слоях надкостницы, в эндосте, в остеонах вдоль кровеносных сосудов, в зоне регенерации на месте травмы.

Первоначально остеобласты синтезируют волокна и органический матрикс кости, а затем обеспечивают его минерализацию и, «замуровав» себя в межклеточном веществе, постепенно превращаются в остеоциты.

Остеоциты – наиболее многочисленные клетки костной ткани. Они имеют отростчатую форму, округлое плотное ядро и слабобазофильную цитоплазму. Органоидов мало, клеточного центра нет – клетки утратили спо­собность к делению. Они располагаются в костных полостях, или лакунах, повторяющих контуры остеоцита. Костная ткань, не содержащая живых остеоцитов, быстро раз­рушается.

Остеокласты – это симпластические макрофагальные структуры, образованные слиянием нескольких моно­цитов крови. Ф ункция остеокласта заключается в разрушении обызвествленного межклеточного вещества.

Существует два основных типа костной ткани, различающихся главным образом по строению межклеточно­го вещества: грубоволокнистая (ретикулофиброзная) и пластинчатая.

Кроме того, очень близкое строение и химический состав имеют ткани зуба – дентин и цемент.

Грубоволокнистая костная тканьвстречается главным образом у зародышей. У взрослых она имеется на месте заросших черепных швов, в местах прикрепления сухожилий к костям, в альвеолярных отростках челю­сти.

В составе этой ткани коллагеновые волокна образуют толстые беспорядочно расположенные пучки, между которыми содержится относительно большое количество остеоцитов в костных полостях, также не имеющих правильной, упорядоченной ориентировки. С поверхности грубоволокнистая кость покрыта соединительноткан­ной оболочкой – надкостницей.

В этом типе костной ткани отсутствуют кровеносные сосуды, а степень ее мине­рализации ниже, чем в пластинчатой кости.

Пластинчатая костная ткань,из которой построен весь скелет человека, отличается упорядоченным рас­положением волокон и клеток с образованием так называемых костных пластинок.

Костная пластинка – это структурная единица пластинчатой костной ткани, образованная параллельными пучками коллагеновьгх волокон, пропитанных минерализованным аморфным веществом. Пластинчатая костная ткань образует:

компактное (плотное) вещество кости, формирующее стенку диафиза трубчатых костей, покрывающее с поверхности большую часть костей скелета и преобладающее в строении некоторых участков плоских кос­тей (чешуя височной кости, лопатка);

губчатое вещество, локализованное в эпифизах трубчатых костей, а также преобладающее в плоских костях таза, черепа, тел позвонков и др.

Остеон (гаверсова система) – структурная единица компактного вещества кости, образованная кровеносным сосудом и окружающими его слоями вставленных друг в друга цилиндрических костных пластинок, причем в каждой пластинке коллагеновые волокна располагаются параллельно друг другу и перпендикулярно волокнам соседних пластинок, что ещё более повышает прочность костной ткани.

3. Плацента, её значение, появление в эволюции. Типы плацент. Плацента человека: тип, строение, функция. Структура и значение плацентарного барьера.

Плацента — это основное связующее звено матери и плода, относится к ворсинчатому гемохориальному типу. Плацента человека — дискоидальная, ее структурно-функциональной единицей является котиледон. Название органа происходит от лат. placenta — пирог, лепешка, оладья.

В плаценте различают две поверхности. Поверхность, которая обращена к плоду, называется плодной. Она покрыта гладким амнионом, через который просвечивают крупные сосуды. Материнская поверхность плаценты обращена к стенке матки. При ее внешнем осмотре обращает внимание серо-красный цвет и шероховатость. Здесь плацента разделяется на котиледоны.

Плодная часть плаценты формируется в следующей последовательности. Трофэктодермабластоцисты при попадании зародыша в матку на 6-7-е сутки развития дифференцируется в трофобласт, обладающий свойством прикрепляться к выстилке матки. При этом клеточная часть трофобласта дифференцируется на две части — наряду с клеточной составляющей, снаружи возникает симпластическая часть трофобласта.

Именно последняя вследствие своего более дифференцированного состояния способна обеспечить имплантацию и подавить иммунную реакцию материнского организма на внедрение генетически чужеродного объекта (бластоцисты) в ткани. За счет развития и ветвления симпластотрофобласта возникают первичные ворсинки, что увеличивает площадь соприкосновения трофобласта с тканями матки.

При имплантации в зародыше возрастают пролиферативные процессы, возникает внезародышевая мезенхима, которая изнутри выстилает цитотрофобласт и является источником развития соединительной ткани в составе ворсинок. Так формируются вторичные ворсинки. На этой стадии трофобласт принято называть хорионом, или ворсинчатой оболочкой.

Типы плацент млекопитающих

1) диффузная плацента эпителиохориалъного типа (свинья, лошадь) – ворсины хориона располагаются равно­мерно почти по всей его поверхности, они врастают в отверстия маточных желез, контактируя с их эпители­ем, и вытягиваются из них при родах «как пальцы из перчатки»;

2) котиледонная плацента десмохориалъного типа (жвачные животные – корова, овца); ворсинки собраны в группы – котиледоны, между которыми поверхность хориона гладкая, лишена ворсинок: при этом ворсинки хориона разрушают эпителий, внедряются в соединительную ткань слизистой оболочки матки и контакти­руют с ней;

3) поясная плацента эндотелиохориалъного типа (хищные животные – кошка, собака): содержащая ворсинки часть хориона имеет форму широкого пояса вокруг плодного пузыря; ворсинки прорастают в слизистую, разрушая эпителий, соединительную ткань и стенку сосуда вплоть до эндотелия, с которым они контактиру­ют;

4) дискоидалъная плацента гемохориального типа (у человекообразных обезьян и человека) – ворсинчатый участок хориона имеет форму диска, причем ворсинками хориона разрушаются в матке и эпителий, и соеди­нительная ткань, и стенки сосудов, включая эндотелий, в результате ворсинки омываются материнской кро­вью, излившейся из сосудов в межворсинчатые пространства.

Источник: https://studopedia.su/15_166454_bilet-.html

Классификация костных тканей

Структурной единицей костной ткани является

Различают две разновидности костных тканей:

· ретикулофиброзную (грубоволокнистую);

· пластинчатую (параллельно волокнистую).

В ретикулофиброзной костной ткани пучки коллагеновых волокон толстые, извилистые и располагаются неупорядочено. В минерализованном межклеточном веществе в лакунах беспорядочно располагаются остеоциты.

Пластинчатая костная ткань состоит из костных пластинок, в которых коллагеновые волокна или их пучки располагаются параллельно в каждой пластинке, но под прямым углом к ходу волокон в соседних пластинках.

Между пластинками в лакунах располагаются остеоциты, тогда как их отростки проходят в канальцах через пластинки.

В организме человека костная ткань представлена почти исключительно пластинчатой формой. Ретикулофиброзная костная ткань встречается только как этап развития некоторых костей (теменных, лобных). У взрослых людей они находятся в области прикрепления сухожилий к костям, а также на месте окостеневших швов черепа (стреловидный шов чешуи лобной кости).

При изучении костной ткани следует дифференцировать понятия костная ткань и кость.

3. Кость — это анатомический орган, основным структурным компонентом которого является костная ткань. Кость как орган состоит из следующих элементов:

· костная ткань;

· надкостница;

· костный мозг (красный, желтый);

· сосуды и нервы.

Надкостница (периост) окружает по периферии костную ткань (за исключением суставных поверхностей) и имеет строение сходное с надхрящницей. В надкостнице выделяют наружный фиброзный и внутренний клеточный или камбиальный слои.

Во внутреннем слое содержатся остеобласты и остеокласты. В надкостнице локализуются выраженная сосудистая сеть, из которой мелкие сосуды через прободающие каналы проникают в костную ткань.

Красный костный мозг рассматривается как самостоятельный орган и относится к органам кроветворения и иммуногенеза.

Костная ткань в сформированных костях представлена только пластинчатой формой, однако в разных костях, в разном участке одной кости она имеет разное строение.

В плоских костях и эпифизах трубчатых костей костные пластинки образуют перекладины (трабекулы), составляющие губчатое вещество кости. В диафизах трубчатых костей пластинки прилежат друг к другу и образуют компактное вещество.

Однако и в компактном веществе одни пластинки образуют остеоны, другие пластинки являются общими.

Строение диафиза трубчатой кости

На поперечном срезе диафиза трубчатой кости различают следующие слои:

· надкостница (периост);

· наружный слой общих или генеральных пластин;

· слой остеонов;

· внутренний слой общих или генеральных пластин;

· внутренняя фиброзная пластинкаэндост.

Наружные общие пластинки располагаются под надкостницей в несколько слоев, не образуя однако полные кольца. Между пластинками располагаются в лакунах остеоциты.

Через наружные пластинки проходят прободающие каналы, через которые из надкостницы в костную ткань проникают прободающие волокна и сосуды.

С помощью прободающих сосудов в костной ткани обеспечивается трофика, а прободающие волокна связывают надкостницу с костной тканью.

Слой остеонов состоит из двух компонентов: остеонов и вставочных пластин между ними. Остеон — является структурной единицей компактного вещества трубчатой кости. Каждый остеон состоит из:

· 5—20 концентрически наслоенных пластин;

· канала остеона, в котором проходят сосуды (артериолы, капилляры, венулы).

Между каналами соседних остеонов имеются анастомозы. Остеоны составляют основную массу костной ткани диафиза трубчатой кости. Они располагаются продольно по трубчатой кости соответственно силовым и гравитационным линиям и обеспечивают выполнение опорной функции.

При изменении направления силовых линий в результате перелома или искривления костей остеоны не несущие нагрузку разрушаются остеокластами.

Однако такие остеоны разрушаются не полностью, а часть костных пластин остеона по его длине сохраняется и такие оставшиеся части остеонов называются вставочными пластинками.

На протяжении постнатального онтогенеза постоянно происходит перестройка костной ткани — одни остеоны разрушаются (резорбируются), другие образуются и потому всегда между остеонами находятся вставочные пластины, как остатки предшествующих остеонов.

Внутренний слой общих пластинок имеет строение аналогичное наружному, но он менее выражен, а в области перехода диафиза в эпифизы общие пластинки продолжаются в трабекулы.

Эндост — тонкая соединительно-тканная пластинка, выстилающая полость канала диафиза. Слои в эндосте четко не выражены, но среди клеточных элементов содержатся остеобласты и остеокласты.

Развитие костной ткани и костей (остеогистогенез)

Все разновидности костной ткани развиваются из одного источника — из мезенхимы, но развитие разных костей осуществляется неодинаково. Различают два способа остеогистогенеза:

· развитие непосредственно из мезенхимы — прямой остеогистогенез;

· развитие из мезенхимы через стадию хряща — непрямой остеогистогенез.

Посредством прямого остеогистогенеза развиваются небольшое количество костей (покровные кости черепа). При этом вначале образуется ретикулофиброзная костная ткань, которая вскоре разрушается и замещается пластинчатой.

Прямой остеогистогенез протекает в IV стадии:

· I стадия образования скелетогенных островков в мезенхиме;

· II стадия образования оссеоидной ткани — органического матрикса;

· III стадия минерализации (кальцификации) оссеоидной ткани и образование ретикулофиброзной костной ткани;

· IV стадия преобразования ретикулофиброзной костной ткани в пластинчатую костную ткань.

Непрямой остеогистогенез начинается со 2-го месяца эмбриогенеза.

Вначале в мезенхиме за счет деятельности хондробластов закладывается хрящевая модель будущей кости из гиалиновой хрящевой ткани, покрытая надхрящницей.

Затем происходит замена хрящевой ткани костной, вначале в диафизах, а затем в эпифизах. Окостенение в диафизе осуществляется двумя способами: перихондрально или энхондрально.

Вначале в области диафиза хрящевой закладки кости из надхрящницы выселяются остеобласты и образуют ретикулофиброзную костную ткань, которая в виде манжетки охватывает по периферии хрящевую ткань. В результате этого надхрящница превращается в надкостницу. Такой способ образования костной ткани называется перихондральным.

После образования костной манжетки нарушается трофика глубоких частей гиалинового хряща, в области диафиза, в результате чего здесь происходит отложение солей кальция — омеление хряща.

Затем, под индуктивным влиянием обызвествленного хряща, в эту зону из надкостницы через отверстие в костной манжетке прорастают кровеносные сосуды, в адвентиции которых содержатся остеокласты и остеобласты.

Остеокласты разрушают омелевший хрящ, за счет деятельности остеобластов, формируется пластинчатая костная ткань в виде первичных остеонов, которые характеризуются широким просветом (каналом) в центре и нечеткими границами между пластинками. Такой способ образования костной ткани в глубине хрящевой ткани и носит название энхондрального.

Одновременно с энхондральным окостенением происходит перестройка грубоволокнистой костной манжетки в пластинчатую костную ткань, составляющую наружный слой генеральных пластин. В результате перихондрального и энхондрального окостенения хрящевая ткань в области диафиза замещается костной. При этом формируется полость диафиза, заполняющаяся вначале красным костным мозгом, сменяющимся затем на желтый костный мозг.

Эпифизы трубчатых костей и губчатые кости развиваются только энхондрально. Вначале в глубоких частях хрящевой ткани эпифиза отмечается омеление. Затем туда проникают сосуды с остекластами и остеобластами и за счет их деятельности происходит замена хрящевой ткани пластинчатой в виде трабекул.

Периферическая часть хрящевой ткани сохраняется в виде суставного хряща. Между диафизом и эпифизом длительное время сохраняется хрящевая ткань — метаэпифизарная пластинка, за счет постоянного размножения клеток метафизарной пластинки происходит рост костей в длину.

В метафизарной пластинке выделяют три зоны клеток:

· пограничная зона;

· зона столбчатых клеток;

· зона пузырчатых клеток.

Примерно к 20-ти годам метаэпифизарные пластинки редуцируются, происходит синостозирование эпифизов и диафиза, после чего рост костей в длину прекращается. В процессе развития костей за счет деятельности остеобластов надкостницы происходит рост костей в толщину.

Регенерация костей после их повреждения и переломов осуществляется за счет деятельности остеобластов надкостницы. Перестройка костной ткани осуществляется постоянно на протяжении всего онтогенеза — одни остеоны или их части разрушаются, другие образуются.

Факторы, влияющие на процесс остеогистогенеза и состояние костной ткани:

· содержание витаминов С, D, А. Недостаток в пище витамина С приводит к нарушению синтеза коллагеновых волокон и к распаду уже существующих, что проявляется хрупкостью и усиленной ломкостью костей.

Недостаточное образование витамина D в коже приводит к нарушению кальцинации костной ткани и сопровождается недостаточностью костей, их гибкостью (при рахите).

Избыточное содержание витамина А активирует деятельность остеокластов, что сопровождается резорбцией костной ткани;

· содержание гормонов паращитовидной и щитовидной железы (паратина и кальцитонина), которые регулируют содержание кальция в костях и плазме крови. На состояние костной ткани оказывают влияние также половые гормоны;

· искривление костей приводит к развитию пьезоэлектрического эффекта, стимуляции остекластов и резорбции костной ткани;

· социальные факторы — питание, освещение и другие;

· факторы окружающей среды — экология.

Возрастные изменения костей

С увеличением возраста изменяется соотношение органических и неорганических элементов костной ткани в сторону увеличения неорганических и уменьшения органических, что сопровождается повышенной ломкостью костей. Именно этим объясняется значительная большая частота переломов у пожилых людей.

Мышечные ткани

1. Свойством сократимости обладают практически все виды клеток, благодаря наличию в их цитоплазме сократительного аппарата, представленного сетью тонких микрофиламентов (5—7 нм), состоящих из сократительных белков – актина, миозина, тропомиозина и других.

За счет взаимодействия названных белков микрофиламентов осуществляются сократительные процессы и обеспечивается движение в цитоплазме гиалоплазмы, органелл, вакуолей, образование псевдоподий и инвагинаций плазмолеммы, а также процессы фаго- и пиноцитоза, экзоцитоза, деления и перемещения клеток.

сократительных элементов, а, следовательно, и сократительные процессы неодинаково выражены в разных типах клеток. Наиболее выражены сократительные структуры в клетках, основной функцией которых является сокращение.

Такие клетки или их производные образуют мышечные ткани, которые обеспечивают сократительные процессы в полых внутренних органах и сосудах, перемещение частей тела относительно друг друга, поддержание позы и перемещение организма в пространстве.

Помимо движения при сокращении выделяется большое количество тепла, а, следовательно, мышечные ткани участвуют в терморегуляции организма. Мышечные ткани неодинаковы по строению, источникам происхождения и иннервации, по функциональным особенностям.

Наконец, следует отметить, что любая разновидность мышечной ткани, помимо сократительных элементов (мышечных клеток и мышечных волокон) включает в себя клеточные элементы и волокна рыхлой волокнистой соединительной ткани и сосуды, которые обеспечивают трофику мышечных элементов, осуществляют передачу усилий сокращения мышечных элементов на скелет. Однако, функционально ведущими элементами мышечных тканей являются мышечные клетки или мышечные волокна.

Классификация мышечных тканей

· Гладкая (неисчерченная)— мезенхимная;

· специальная — нейрального происхождения и эпидермального происхождения;

· Поперечно-полосатая (исчерченная)— скелетная;

· сердечная.

Как видно из представленной классификации мышечная ткань подразделяется по строению на две основные группы — гладкую и поперечно-полосатую. Каждая из двух групп в свою очередь подразделяется на разновидности, как по источникам происхождения, так и по строению и функциональным особенностям.

Гладкая мышечная ткань, входящая в состав внутренних органов и сосудов, развивается из мезенхимы.

К специальным мышечным тканям нейрального происхождения относятся гладкомышечные клетки радужной оболочки, эпидермального происхождения — миоэпителиальные клетки слюнных, слезных, потовых и молочных желез.

Поперечно-полосатая мышечная ткань подразделяется на скелетную и сердечную. Обе эти разновидности развиваются из мезодермы, но из разных ее частей: скелетная — из миотомов сомитов, сердечная — из висцерального листка спланхнотома.

Каждая разновидность мышечной ткани имеет свою структурно-функциональную единицу.

Структурно-функциональной единицей гладкой мышечной ткани внутренних органов и радужной оболочки является гладкомышечная клетка — миоцит; специальной мышечной ткани эпидермального происхождения — корзинчатый миоэпителиоцит; сердечной мышечной ткани — кардиомиоцит; скелетной мышечной ткани – мышечное волокно.

Предыдущая234567891011121314151617Следующая

Дата добавления: 2015-11-04; просмотров: 540; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

ПОСМОТРЕТЬ ЁЩЕ:

Источник: https://helpiks.org/5-96894.html

Структурной единицей костной ткани является

Структурной единицей костной ткани является

Только у нас: Введите до 31.03.2020 промокод бонус2020 в поле купон при оформлении заказа и получите скидку 25% на всё!

Именно сочетание веществ разного происхождения делает кость твердой, прочной, но при этом упругой.

Остеон — это структурная единица кости: строение и функции

В теле человека находится примерно 206 костей, но мало кто знает их строение и понимает, почему они такие прочные. А ведь главную роль в этом играет остеон. Это структурные единицы, из которых построены кости конечностей, ребер, позвонков и др. Есть у него еще одно название — гаверсова система.

Строение кости

Только из-за совместного действия скелета и мышц нашего тела мы способны передвигаться, и это их основная функция. Есть, конечно, и дополнительные — кроветворение, обмен микроэлементами, запасательная (резерв жира). Преимущественно имеют следующее строение — особые клетки кости и межклеточное вещество, наружное покрытие (надкостниц), и во внутренней части расположен костный мозг.

Любая косточка состоит из двух компонентов — компактного и губчатого вещества. Первое размещается по периферии, второе — в центре, и состоит из костных перекладин, расположенных не хаотично, а в четком соответствии с внешним воздействием на кость на конкретном участке.

Состав кости

Сочетание органических (30-40 %) и неорганических (60-70 %) веществ является особенностью состава скелета. К неорганическим веществам относятся соли разного химического состава: фосфат и карбонат кальция, сульфат магния и другие. Все они растворяются в кислотах, после ее воздействия в кости остаются только органические вещества, а кость по внешнему виду и на ощупь напоминает губку.

Из органических веществ можно выделить жиры, мукопротеиды, гликогены и коллагеновые волокна (представлены оссеином, оссеомукоидом, эластином). Если кость сжечь, то форма ее сохранится, но она станет хрупкой и при надавливании легко раскрошится.

Именно сочетание веществ разного происхождения делает кость твердой, прочной, но при этом упругой.

Виды костей

По отличию в строении делятся на:

  • трубчатые. Бывают длинные и короткие. Состоят из двух эпифизов и диафиза, форма трехгранная или цилиндрическая;
  • губчатые — в составе преимущественно губчатая ткань, окруженная твердым веществом;
  • плоские. Представляют собой две плоские пластинки, между которыми разместилось губчатое вещество, например, кость лопатки;
  • смешанные. Кости, состоящие из нескольких частей сложной формы. Бывают различными по форме и выполняемым функциям. Например, грудной позвонок состоит из трех частей — тела, дуги и отростка.

Клеточное строение кости

Рассмотрев костную ткань на клеточном уровне, можно выделить три основные формы клеток, отличающихся по строению и выполняющих свои функции:

  1. Остеобласты — молодые крупные клетки, которые имеют мезенхимное происхождение. Цилиндрическая форма, ядро расположено эксцентрично. Каждая клетка обладает отростком, чтобы соприкасаться с соседними остеобластами. Основные функции — синтезировать межклеточное вещество и отвечать за его минерализацию.
  2. Остеоциты — это следующая стадия развития клеток кости остеобластов, они встречаются в кости, которая уже перестала развиваться Тело клетки небольшое, по сравнению с остеобластами, а количество отростков большое, и может варьировать даже в одной и той же кости. Ядро тоже уменьшилось в размерах и стало более плотным. Клетка как будто замурована в минерализованное вещество межклеточное (лакуны).
  3. Остеокласты — крупные клетки, размеры которых могут достигать более 80 микрон. Ядер не одно, а несколько, так как они образуются из нескольких, слившихся между собой макрофагов. Так как остеокласт находится в постоянном движении, его форма постоянно меняется. Со стороны кости, которую нужно разрушить, на клетке есть многочисленные отростки, которые будто «рассасывают» кость, забирая из нее все соли и разрушая матрикс.

Эти три типа клеток, вместе с аморфным веществом и оссеиновыми волокнами, расположенными в свободном пространстве, упорядочены и образуют пластинки, в свою очередь, формирующие остеоны, вставочные и генеральные пластинки.

Структурное строение кости

Диафиз состоит из двух структурных единиц: гаверсова система, или остеон, — это основная часть — и вставочные пластины. Строение остеона весьма сложное. Костные пластинки свернуты в цилиндры разных диаметров. Эти цилиндры вложены друг в друга, а в центре проходит так называемый гаверсов канал. В этом канале проходят нервы и кровеносные сосуды.

Остеон — это не отдельно лежащая структурная единица, она многократно анастомозирует между другими единицами, а также с надкостницей и сосудами костного мозга. Ведь кровоснабжение всех остеонов берет свое начало именно из кровеносной сети надкостницы, а затем переходит в сосудики костного мозга. Параллельно кровеносным сосудам идут и нервные окончания.

Располагается любой остеон, фото тому подтверждение, в трубчатой кости параллельно длинной стороне, а в губчатых — перпендикулярно к силе сжатия и растяжения.

Каждая кость построена из своего индивидуального количество таких единиц, как остеон, биология оправдывает такое строение тем, что нагрузка на каждую из них своя. Бедренная кость подвергается большой нагрузке на сжатие при ходьбе, количество гаверсовых систем в ней составляет 1,8 шт. на квадратный миллиметр. Причем 11 % — это доля гаверсовых каналов.

Остеоны всегда разделены промежуточными пластинами (еще их называют вставочными). Это не что иное, как разрушенный остеон кости, пришедший в негодность по той или иной причине. Ведь в костях постоянно идет процесс разрушения и постройки новых гаверсовых систем.

Функции остеона

Перечислим функции остеона:

  • основная строительная единица костной ткани;
  • придает прочность;
  • защита нервного окончания и сосуда, несущего кровь.

Становится понятно, что остеон — это структура, выполняющая одну из основных ролей в нашем движении, без него скелет не смог бы выполнять свое прямое назначение — поддерживать органы, ткани и тело в пространстве.

Читай также:

Что такое гомогенат и как правильно его хранить .   Материал для костной ткани .   Костная ткань это какой вид ткани .   Гомогенат трутневый с витамином в6 .   Что значит нарастить костную ткань .  

Только у нас: Введите до 31.03.2020 промокод бонус2020 в поле купон при оформлении заказа и получите скидку 25% на всё!

Источник: https://zdorovie-ok.ru/strukturnoj-edinicej-kostnoj-tkani-yavlyaetsya/

К вопросу о механических свойствах костной ткани

Структурной единицей костной ткани является

К вопросу о механических свойствах костной ткани

Лайуни Рида бен Шедли

Национальный университет физического воспитания и спорта Украины

Аннотация. В статье приводятся обобщенные литературные данные касающиеся механических свойств костной ткани.

Ключевые слова: костная ткань, механика, организм человека.

Анотацiя. Лайунi Рiда Бен Шедлi. До питання про бiомеханiчнi властивостi кiстковоi тканини. Устаттi наводяться узагальненi лiтературнi данi, якi торкаються механiчних властивостей кiстковоi тканини.

Ключовi слова: кiсткова тканина, механiка, органiзм людини.

Annotation. Ridha Liayouni. To a question on mechanical charecteristics osteal fabric. The generalized literary data touching mechanical characteristics of an osteal fabric are given in article.

Keywords: osteal fabric, mechanics, organism of the man.

Активное взаимодействие организма с внешней средой и опосредованное участие в этом всех его многочисленных систем и органов обеспечивается через опорно-двигательный аппарат.

Основной же компонент аппарата движений – мышца – отличается от таких систем, прежде всего тем, что она непосредственно преобразует химическую энергию в механическую, достигая довольно высокого коэффициента полезного действия в условиях нормальной температуры тела человека.

Основной структурно-функциональной единицей скелета человека является кость. В организме человека каждая кость-это живой, пластичный орган. Она имеет свою морфологическую структуру, функционирует как часть целостного организма и состоит из нескольких тканей.

Основной тканью в кости является костная ткань; кроме неё имеются плотная соединительная ткань, образующая, например, оболочку кости, которая покрывает её сосуды снаружи, рыхлая соединительная ткань, одевающая сосуды, хрящевая ткань, покрывающая концы костей или образующая зоны роста, ретикулярная ткань, являющаяся основой костного мозга, и элементы нервной ткани – нервы нервные окончания. Каждая кость имеет определенную форму, величину, строение и находиться в связи с соседними костями. В состав скелета входит 206 костей – 85 парных и 36 непарных. Кости составляют примерно 18% веса тела.

Выделяют пять структурных уровней компактной костной ткани.

Первый уровень составляет биополимерная макромолекула тропоколлагена, построенная из трёх левых спиральных полипептидных цепочек, которые образуют правую спираль, и неорганические кристаллы.

Второй структурный уровень состоит из микрофибрилл коллагена, образуемых пятью молекулами тропоколлагена.

Третий структурный уровень – это волокно, состоящее из большого количества миофибрилл и связанных с ними микрокристаллов. Между отдельными кристаллами образуются связи в продольном и поперечном направлениях. Эта совокупность органических и неорганических веществ является армирующим компонентом костной ткани.

Четвёртый структурный уровень образуется из ламелл – тонких изогнутых пластинок, представляющих наименьший самостоятельный конструктрукционный элемент компактной костной ткани. Коллагеноминеральные композиции, объединённые при помощи вяжущего вещества, служат материалом для пластинок.

Пятый структурный уровень представлен остеоном или гаверсовой системой – конструкционным элементом, который образуется вокруг кровеносных сосудов, включающихся в объём кости при её образовании. Остеон формируется из концентрически расположенных костных ламелл вокруг гаверсового канала, в котором проходят сосуды и нервы.

Остеоны располагаются не беспорядочно, а соответственно функциональной нагрузке, воздействующей на кость.

Из остеонов формируются перекладины костного вещества или балки, которые в свою очередь образуют компактное вещество (если перекладины лежат плотно) или губчатое вещество (если перекладины лежат рыхло).

Распределение компактного и губчатого вещества зависит от условий функционирования кости. Губчатое вещество располагается там, где при большом объеме кости требуется сохранить её легкость и прочность. В трубчатых костях остеоны располагаются параллельно длине кости.

Функция костной ткани многообразна. Первая и наиболее важная функция опоры для мягких тканей, подавляющее большинство которых располагается в области костных образований и прикрепляется к костям. Мышцы, проходят над местами соединения костей, и производят смещение одной кости в отношении другой или перемещение всего тела относительно поверхности Земли.

Тем самым кости как опорные образования (в основном, рычаги) принимают участие в выполнении всех движений, совершаемых человеком. Кости также формируют полости (черепная, спинномозговая, тазовая и грудная) для защиты внутренних органов. В кости находится красный костный мозг, который выполняет функцию кроветворения.

Кости осуществляют функцию депо для минеральных веществ и микроэлементов.

В состав живой кости взрослого человека, по данным Гладышевой (1984), входит воды 50 %, жира 15,75%, оссеина (коллагеновых волокон), органического вещества 12,4%, неорганических веществ 21,85%. А по данным Энока (1998) вода составляет около 20% сырой массы кости, остеоколлагеновые волокна, – около 35%, соли – 45%. Неорганические вещества представлены различными солями.

Больше всего в кости содержится фосфата извести – 60% , карбоната извести- 5,9%, сульфата магния- 1,4%. Кроме того, в костях имеются представители почти всех земных элементов. Минеральные соли легко растворяются в слабом растворе соляной или азотной кислоты. Этот процесс называется декальцинацией. Костная ткань может выдержать довольно большие нагрузки на сжатие, растяжение, удар.

По данным многих специалистов, костная ткань на сжатие приблизительно в пять раз прочнее железобетона, по сопротивлению на разрыв она несколько превышает сопротивление дуба, ее прочность примерно соответствует при этом прочности чугуна. В частности, бедренная кость может выдерживать в среднем до 3т. на сжатие, большеберцовая кость – даже до 4 т.

На растяжение компактное вещество кости выдерживает нагрузку 10-12 кг на 1 мм2, а на сжатие -12-16 кг. Так, чтобы раздробить бедренную кость давлением, нужно приблизительно 3 тыс. кг, большеберцовую кость – не менее 4 тыс. кг. Оссеин кости выдерживает нагрузку на растяжение 1,5 кг на 1 мм2, на сжатие – 2,5 кг. Несущая способность костей при изгибе значительно меньше.

Например, бедренная кость выдерживает нагрузку на изгиб до 2,5 * 103 Н.

Прочность костной ткани обеспечивается сложным сочетанием важнейших ее химических компонентов – органических, неорганических соединений и воды. В зависимости от питания, условий жизни и ряда других факторов в кости меняется процентное соотношение этих компонентов и ее прочность.

В костях детей относительно больше, чем в костях взрослых, оссеина, они более эластичны, меньше подвержены переломам, но под влиянием чрезмерных нагрузок легче деформируются. Кости, выдерживающие большую нагрузку, богаче известью, чем кости, менее нагруженные.

При недостатке в пище ребенка витамина D в костях плохо откладываются соли извести, сроки окостенения нарушаются, а недостаток витамина А может привести к утолщению костей, запустению каналов в костной ткани.

Процессы, которым подвергается кость, включают развитие, укрепление и резорбцию. Они имеют собирательное название – ремоделирование, или реконструкция. Полный цикл ремоделирования (замены всех структур) костей конечности взрослого человека составляет около 10-20 лет.

Ремоделирование представляет собой равновесие между абсорбцией кости (остеокластами) и её образованием (остеобластами). Оно постоянно изменяется и зависит от таких факторов, как физическая активность, возраст и заболевания.

Физические нагрузки являются основным фактором, определяющим увеличение костной массы у людей. Среди компонентов нагрузки, способствующих увеличению плотности минералов кости, основным является величина отягощения.

Конроем (1996) экспериментально установлено, что адаптация костной массы юных штангистов на 30-50% (в зависимости от анатомического участка и индивидуальных особенностей спортсмена) зависит от силы, развиваемой при выполнении упражнений.

Montoye et al., (1980) обнаружены различия в минеральном составе, плотности и массе костей доминирующих конечностей по сравнению с не доминирующими.

Проявляется это в том, что кости доминирующих конечностей, имеют большую массу, ширину и плотность минералов.

В целом следует отметить, что повышение уровня плотностей костей отмечается в тех участках скелета, которые подвергаются наиболее интенсивным механическим воздействиям.

Плотность костей в значительной мере определяется квалификацией спортсменов, спецификой тренировочной и соревновательной деятельности в различных видах спорта.

У спортсменов высокого класса отмечается повышенная плотность костей по сравнению со спортсменами низкой квалификации и особенно лицами, не занимающимися спортом.

Представители скоростно-силовых видов спорта, вольной и греко-римской борьбы имеют достоверно более высокие показатели плотности костей по сравнению со спортсменами, специализирующимися в циклических, игровых и сложнокоординационных видах спорта.

По данным Michel et al., (1989) на снижение плотности костей приводят большие объёмы работы на выносливость.

Особенно низкая плотность костей отмечается у пловцов на длинные дистанции, что обусловлено не только большим объёмом работы аэробного характера, спецификой отбора пловцов, способных показать высокие результаты на стайерских дистанциях, но и спецификой водной среды, резко снижающей нагрузки на опорно-двигательный аппарат.

С другой стороны, главная проблема, с которой сталкиваются космонавты во время продолжительного пребывания в космосе, – потеря костной ткани (Zernicke, Vailis, Salem, 1990). Условия гипогравитации приводят к деминерализации костей, чрезмерной потере солей скелетом (Anderson, Cohn, 1985; Morey, 1979).

В результате этого кости становятся менее прочными и во время значительной физической нагрузки (например, во время выполнения работ вне космического корабля) могут ломаться. Кроме того, при возвращении на Землю затрудняется процесс восстановления костей.

Вследствие этого становится особо актуальной разработка программ физических упражнений, которые позволили бы свести к минимуму потери костной ткани у космонавтов.

Кости как органы представлены у человека в виде единой функциональной системы, относящейся к пассивному двигательному аппарату. По форме и виду соединений костей можно представить объем движений и тем самым судить о функциональных особенностях аппарата движений.

Литература

1. Алтер М.Ф. Наука о гибкости. – К.: Олимпийская литература, 2001. – 421с.

2. Белинцев Б.М. Физические основы биологического формообразования. – М.: Наука, 1991.-252с.

3. Энока P.M. Основы кинезиологии. – К.: Олимпийская литература, 1998. С. 40- 60.

Поступила в редакцию 28.05.2002г.

Источник: http://lib.sportedu.ru/Books/XXPI/2002N4/p18-22.htm

Лечение Костей
Добавить комментарий