Виды роста костной ткани

Костные ткани: разновидности, строение, функции. Механизмы роста и регенерации кости. перестройка костной ткани, факторы её вызывающие

Виды роста костной ткани

Костные ткани — это специализированный тип соединительной ткани с высокой минерализацией межклеточного органического вещества, содержащего около 70% неорганических соединений, главным образом фосфатов кальция.

Существует два основных типа костной ткани:

· ретикулофиброзная (грубоволокнистая),

· пластинчатая.

Эти разновидности костной ткани различаются по структурным и физическим свойствам, которые обусловлены главным образом строением межклеточного вещества.

Грубоволокнистая костная ткань (ретикулофиброзную) обнаруживается у плодов, а у взрослых – в местах прикрепления сухожилий мышц к костям, в местах зарастания черепных швов, в зубных альвеолах, в костном лабиринте внутреннего уха. В любом возрасте этот вид костной ткани может появляться в ответ на повреждение, в результате лечения, стимулирующего костеобразование, а также при нарушениях метаболизма, воспалительных и неопластических процессах.

Грубоволокнистая костная ткань характеризуется высокой скоростью формирования и обмена. Межклеточное вещество грубоволокнистой костной ткани состоит из мощных пучков коллагеновых волокон, расположенных параллельно или под углом друг к другу, большого количества протеогликанов и гликопротеинов и имеет низкое содержание минеральных солей.

Плотность расположения остеоцитов более высокая, чем в пластинчатой костной ткани. Остеоциты уплощены, лежат в лакунах и не имеют определенной ориентации по отношению к волокнам.

Пластинчатая костная ткань отличается от ретикулофиброзной костной ткани упорядоченным расположением коллагеновых волокон в составе костных пластинок. Костные пластинки, в свою очередь, формируют параллельные концентрические слои – остеоны – структурно-функциональные единицы пластинчатой кости.

Остеоны вместе с другими костными пластинками (наружные, внутренние периферические (генеральные) пластинки, интерстициальные пластинки) формируют основную массу компактной кости человека. Суммарно в составе компактной кости минеральный компонент матрикса по весу в процентном отношении несколько меньше органического.

К костной ткани относятся также дентин и цемент зуба, имеющие сходство с костной тканью по высокой степени минерализации межклеточного вещества и опорной, механической функции.

Клетки костной ткани: остеобласты, остеоциты и остеокласты. Все они развиваются из мезенхимы, как и клетки хрящевой ткани. Точнее – из мезенхимных клеток склеротома мезодермы. Однако остеобласты и остеоциты связаны в своём диффероне так же, как фибробласты и фиброциты (или хондробласты и ходроциты). А остеокласты имеют иное, – гематогенное происхождение.

Развитие костной ткани у эмбриона осуществляется двумя способами:

1) непосредственно из мезенхимы, – прямой остеогенез;

2) из мезенхимы на месте ранее развившейся хрящевой модели кости, – это непрямой остеогенез.

Постэмбриональное развитие костной ткани происходит при ее физиологической и репаративной регенерации.

Остеобласты — это молодые клетки, создающие костную ткань. В кости они встречаются только в надкостнице. Они способны к пролиферации. В образующейся кости остеобласты покрывают почти непрерывным слоем всю поверхность развивающейся костной балки.

Остеоциты — это преобладающие по количеству зрелые (дефинитивные) клетки костной ткани, утратившие способность к делению. Они имеют отростчатую форму, компактное, относительно крупное ядро и слабобазофильную цитоплазму. Органеллы развиты слабо.

Остеокласты – это клетки гематогенной природы, способные разрушать обызвествленный хрящ и кость. Остеокласты располагаются обычно на поверхности костных перекладин.

Рост кости

Эволюционно выработано два механизма образования костной ткани: прямой(первичный, десмальный, интрамембранный) остеогистогенез – непосредственно из клеток скелетогенной мезенхимы. Так образуются кости крыши черепа, часть ключицы.

Инепрямой(вторичный, энхондральный) остеогистогенез, при котором из скелетогенной мезенхимы сначала образуются хрящевые модели костей. Затем в ходе онтогенеза они замещаются костной тканью.

Таким путем формируются кости конечностей, осевого скелета.

Постнатальный рост костей осуществляется в детском и юношеском возрастах. Рост в толщину происходит за счет функционирования периоста. Рост костей в длину происходит благодаря наличию в переходной между диафизом и эпифизом зоне метаэпифизарной хрящевой пластинки роста.

Процесс роста в длину является гормонозависимым. В случае развития гормонального дисбаланса с вовлечением кальцитонина, паратгормона, метаболитов витамина D возможна преждевременная минерализация зон роста и прекращение роста либо противоположный процесс с формированием гигантизма.

Регенерация кости

Физиологическая регенерация происходит в связи с постоянным изнашиванием и гибелью клеток в тканях (физиологическая дегенерация) для замены их новыми.

Она бывает внутриклеточной (обновление органелл) или клеточной (обновление клеток) и завершается ремоделированием (перестройкой) костной ткани, которое осуществляется в связи с действующими на данный участок кости нагрузками и зависит от нескольких факторов, в том числе возраста.

Этот тип регенерации наиболее выражен у спортсменов. Полностью цикл ремоделирования при условии адекватного кровоснабжения занимает около 40 дней.

Репаративная регенерация – это восстановление ткани после того или иного повреждения. Механизмы физиологической и репаративной регенерации качественно едины, осуществляются на основе общих закономерностей.

Источник: https://megaobuchalka.ru/14/10006.html

Кость как орган: ее развитие, строение, рост. Классификация костей

Виды роста костной ткани

Развитие кости

Образование любой кости происходит за счет – остеобластов, которые вырабатывают межклеточное костное вещество, играющее главную опорную роль. Различаются следующие виды окостенения (остеогенеза):

1. Эндесмальное окостенение (en – внутри, desme – связка) – на определенном участке эмбриональной соединительной ткани, имеющей очертания будущей кости, появляются островки костного вещества. Из первичного центра процесс окостенения распространяется во все стороны лучеобразно путем наложения костного вещества по периферии.

2. Перихондральное окостенение (peri – вокруг, chondros – хрящ) происходит на наружной поверхности хрящевых зачатков кости при участии надхрящницы. Благодаря деятельности остеобластов надхрящницы, на поверхности, непосредственно под надхрящницей, откладывается костная ткань, которая постепенно замещает ткань хрящевую и образует компактное костное вещество.

3. С переходом хрящевой модели кости в костную надхрящница становится надкостницей, и дальнейшее отложение костной ткани идет за счет надкостницы – периостальное окостенение.

4. Энхондральное окостенение(en, греч. – внутри, chondros – хрящ) совершается внутри хрящевых зачатков при участии надхрящницы, которая отпускает отростки, содержащие сосуды, внутрь хряща.

Проникая в глубь хряща вместе с сосудами, костеобразовательная ткань разрушает хрящ, предварительно подвергшийся омелению (отложение в хряще извести и перерождение его клеток) и образует в центре хрящевой модели кости островок костной ткани (ядро, или точка окостенения).

Распространение процесса энхондрального окостенения из центра к периферии приводит к формированию губчатого костного вещества.

Рост кости

В процессе перестройки наряду с образованием новых остеонов идет параллельный процесс рассасывания (резорбции) старых. Рассасывание есть результат деятельности в кости особых клеток – остеокластов. Благодаря работе последних почти вся энхондральная кость диафиза рассасывается, и в ней образуется полость (костномозговая полость).

Рассасыванию подвергается также и слой перихондральной кости, но взамен исчезающей костной ткани откладываются новые слои ее со стороны надкостницы. В результате происходит рост молодой кости в толщину. В течение всего периода детства и юности сохраняется прослойка хряща между эпифизом и метафизом, называемая метаэпифизарным хрящом, или пластинкой роста.

За счет этого хряща кость растет в длину. Впоследствии размножение клеток прекращается, метаэпифизарный хрящ уступает натиску костной ткани, и метафиз сливается с эпифизом; получается синостоз (костное сращение).

Таким образом, окостенение и рост кости есть результат жизнедеятельности остеобластов и остеокластов, выполняющих противоположные функции аппозиции и резорбции – созидания и разрушения.

Строение

Костное вещество состоит из двоякого рода химических веществ: органических (1/3), главным образом оссеина, и неорганических (2/3), главным образом солей кальция, особенно фосфорнокислой извести (более половины – 51,04%). Сочетание неорганических и органических веществ в живой кости и придает ей необычайную крепость и упругость.  

Структурной единицей кости, является остеон, т. е. система костных пластинок, концентрически расположенных вокруг канала (гаверсова канала), содержащего сосуды и нервы.

Остеоны не прилегают друг к другу вплотную, а промежутки между ними заполнены промежуточными или вставочными (интерстициальными) костными пластинками. Из остеонов состоят более крупные элементы кости – перекладины костного вещества.

Из этих перекладин складывается двоякого рода костное вещество: если перекладины лежат плотно, то получается плотное, компактное вещество, substantia compacta.

Если перекладины лежат рыхло, образуя между собою костные ячейки наподобие губки, то получается губчатое вещество, substantia spongiosa (spongia, греч. – губка). Поскольку кости испытывают двойное действие – давление и тягу мышц, постольку костные перекладины располагаются по линиям сил сжатия и растяжения.

Костные ячейки содержат костный мозг – орган кроветворения и биологической защиты организма. Он участвует также в питании, развитии и росте кости. В трубчатых костях костный мозг находится также в центральном канале этих костей, называемом поэтому костномозговой полостью, cavum medullare. Костный мозг бывает двух родов:

Красный костный мозг, medulla ossium rubra – имеет клеточные элементы,которые отвечают за кроветворение и костеобразование. Он пронизан нервами и кровеносными сосудами, питающими, кроме костного мозга, внутренние слои кости.

Желтый костный мозг, medulla ossium flava, обязан своим цветом жировым клеткам, из которых он главным образом и состоит.

Снаружи кость, за исключением суставных поверхностей, покрыта надкостницей, periosteum – это тонкая пленка, окружающая кость снаружи и прикрепленная к ней с помощью соединительнотканных пучков – прободающих волокон, проникающих в кость через особые канальцы. Она состоит из двух слоев: наружного волокнистого (фиброзного) и внутреннего костеобразующего (остеогенного, или камбиального). Она богата нервами и сосудами, благодаря чему участвует в питании и росте кости в толщину.

Таким образом, в понятие кости как органа входит костная ткань, образующая главную массу кости, а также костный мозг, надкостница, суставной хрящ и многочисленные нервы и сосуды.

Классификация

В скелете различают следующие части: кости туловища (позвонки, ребра, грудина), кости черепа (мозгового и лицевого), кости поясов конечностей – плечевого (лопатка, ключица) и тазового (подвздошная, лобковая, седалищная) и кости свободных конечностей – верхней (плечо, кости предплечья и кисти) и нижней (бедро, кости голени и стопы).

По внешней форме различают кости длинные, короткие, широкие и смешанные. Однако такое установленное еще во времена Галена деление только по одному признаку (внешняя форма) оказывается односторонним и служит примером формализма старой описательной анатомии.

Поэтому правильнее различать кости:

I. Трубчатые кости. Они построены из губчатого и компактного вещества, образующего трубку с костномозговой полостью; выполняют все 3 функции скелета (опору, защиту и движение).

Из них длинные трубчатые кости (плечо и кости предплечья, бедро и кости голени) являются стойками и длинными рычагами движения, кроме диафиза, имеют энхондральные очаги окостенения; короткие трубчатые кости (пясть, плюсна, фаланги) представляют короткие рычаги движения.

II. Губчатые кости. Построены преимущественно из губчатого вещества, покрытого тонким слоем компактного.

Среди них различают длинные губчатые кости (ребра и грудина) и короткие (позвонки, запястье, предплюсна).

К губчатым костям относятся сесамовидные кости (коленная чашка, гороховидная кость), функция их – вспомогательные приспособления для работы мышц; развитие – энхондральное в толще сухожилий, которые они и укрепляют.

III. Плоские кости:

а) плоские кости черепа (лобная и теменные). Функция – преимущественно защита (покровные кости); строение – diploe; окостенение – на основе соединительной ткани;

б) плоские кости поясов (лопатка, тазовые кости), функция – опора и защита; строение – преимущественно из губчатого вещества; окостенение – на почве хрящевой ткани.

IV. Смешанные кости (кости основания черепа) – сюда относятся кости, сливающиеся из нескольких частей, имеющих разную функцию, строение и развитие. К смешанным костям можно отнести и ключицу, развивающуюся частью эндесмально, частью энхондрально.

Дата добавления: 2018-04-05; просмотров: 1217;

Источник: https://studopedia.net/3_87211_kost-kak-organ-ee-razvitie-stroenie-rost-klassifikatsiya-kostey.html

Строение и рост костей

Виды роста костной ткани

В составе кости обычно выделяют два типа соединительной ткани: костную и хрящевую. В костях расположены нервы и кровеносные сосуды, снабжающие клеткам костной ткани питательные вещества и кислород и удаляют вредные продукты их жизнедеятельности.

Костная ткань

Остеоциты — клетки костной ткани-составляют небольшую долю ее массы. Остеоциты сочетаются между собой тонкими отростками, а пространство между ними заполняется твердой межклеточным веществом. Так образуется множество соединенных между собой костных пластинок.

Состав костей человека

Остеоциты протяжении всей жизни человека продуцируют межклеточное вещество. В ее составе неорганические соединения кальция, фосфора, магния и натрия и вода. В организме почти весь запас кальция в составе кальций фосфата содержится в костной ткани. Именно из нее ионы этого элемента в случае необходимости поступают в кровь.

Багаж знаний советует почитать похожие конспекты и рефераты:

Благодаря значительному количеству кальций фосфата кости твердые и прочные. А вот упругости им предоставляет белок коллаген, образует в ткани эластичные волокна.

Если погрузить кость в 5%-ный раствор соляной кислоты, из нее удаляются минеральные вещества. Кость теряет твердость и становится гибкой. Если кость прожаривать на малом огне, вода испаряется, а органические вещества сжигаются.

Кость, в которой сохранилась лишь неорганическая составляющая, становится хрупкой.

Химический состав костей человека

В течение жизни соотношение органических и неорганических веществ в костной ткани меняется. У детей доля органических веществ в костях больше, чем у взрослых, и поэтому кости детей гибкие и под действием нагрузок могут деформироваться.

Хрящевая ткань

Хрящевая ткань менее твердая, однако упругая по костную. Клеток в хрящевой ткани немного, основную ее часть составляет межклеточное вещество, богатая коллаген и воду.

Твердость и упругость хряща зависит от его размещения в скелете. Крепкие хрящи покрывают суставные поверхности костей, а упругие волокнистые хрящи образуют межпозвонковые диски. В хрящах нет кровеносных сосудов, источником питания для них окружающие ткани.

Длинная трубчатая кость

Длинная трубчатая кость — это полый стержень (диафиз), на концах которого расположены утолщения — головки (эпифизы). Внешне кость покрыта надкостницей — плотной оболочкой из соединительной ткани, которая пронизана нервами и кровеносными сосудами.

И стенка диафиза, и эпифизы состоят из костных пластинок, однако конструкции, они образуют в этих частях кости, отличаются. Стенка диафиза построена из множества цилиндров-остеонов: у них пластинки расположены концентрически.

По центру каждого остеона проходит канал, в котором размещены кровеносные сосуды и нервы. Остеоны плотно прилегают друг к другу, образуя прочную структуру, которую традиционно называют компактной веществом.

Строение кости человека

В эпифизах костные пластинки формируют так называемую губчатую вещество — конструкцию, похожую на кружево. Губчатую строение имеют не только эпифизы трубчатых костей, но и короткие кости. Губчатая вещество оказывает кости легкости, не снижая ее прочности.

Полость диафиза заполнена желтым костным мозгом, который содержит много жира. В губчатой ​​веществе эпифизов размещается красный костный мозг, участвует в образовании клеток крови. Ни один из этих «мозгов» не имеет отношения к нервной системе, это разновидности соединительной ткани.

Рост кости

Скелет начинает формироваться в первые недели развития зародыша. Кости образуются разными способами. В одних случаях зародышевые клетки вследствие специализации сразу образуют костную ткань, а из нее кость.

В других — зародышевые клетки, специализируясь, образуют хрящевую ткань, приобретает форму кости. В ходе развития хрящевая ткань постепенно разрушается и замещается костной, что растет, сохраняя заданную форму.

Зародышевые клетки функционируют в костях в течение всей жизни. Они отвечают за рост и обновление кости. Эти клетки, специализируясь, могут образовывать как костную, так и хрящевую ткань. Часть таких клеток содержится в нижнем слое надкостницы и обеспечивает рост трубчатой ​​кости в толщину.

Другая их часть размещается на полюсах кости и отвечает за ее рост в длину, а также за образование хряща. В костях являются клетки-разрушители, которые уничтожают старую костную ткань. Рост костей завершается в 21-23 года, однако костная ткань обновляется на протяжении всей жизни человека.

Регулирует рост костей гормон роста.

В течение нескольких первых часов в месте перелома образуется кровяной сгусток — свертывается кровь, которая вытекает из поврежденных сосудов самой кости и надкостницы. Через несколько дней после травмы восстанавливается надкостницы.

На месте кровяного сгустка из волокнистой соединительной ткани сначала быстро образуется костная мозоль. Благодаря согласованной работе клеток-разрушителей и зародышевых клеток она постепенно замещается настоящей костной тканью. В то же время в этом месте прорастают кровеносные сосуды.

Процесс восстановления костной ткани может продолжаться несколько месяцев.

Длинная трубчатая кость, Костная ткань, Остеоны, Остеоциты, рост, состав костей, Строение костей, Хрящевая ткань, эпифизы

Источник: http://bagazhznaniy.ru/obrazovanie/stroenie-i-rost-kostej

Рост кости

Виды роста костной ткани

Гормон роста (ГР), или соматотропин (это его старое название), увеличивает синтез белка и обеспечивает рост практически всех тканей. Но более вего это заметно на росте костей и увеличении размеров скелета.

Это является итогом нескольких процессов: (1) увеличение поступления белков в клетки хрящевой и костной тканей, что стимулирует их рост; (2) увеличение скорости деления этих клеток; (3) специфический эффект преобразования хондроцитов в остеогенные клетки, что вызывает разрастание костной ткани.

Существуют два способа роста кости:

1. Для трубчатых костей под влиянием гормона роста возможен рост в длину со стороны эпифизарного хряща. Поначалу это опосредовано разрастанием хрящевой ткани с последующим замещением ее костной тканью, что и обеспечивает рост кости в длину. По мере взросления хрящевая эпифизарная ткань полностью замещается костной, и рост костей в длину прекращается.

2. Остеобласты обеспечивают разрастание новой кости со стороны периоста или костных полостей на смену старой. Одновременно остеокласты «убирают» старую кость. Если скорость разрастания новой кости больше скорости рассасывания старой, толщина кости возрастает.

Гормон роста существенно больше стимулирует функцию остеобластов, поэтому кости способны утолщаться под влиянием гормона роста в течение всей жизни. Это особенно справедливо для губчатых костей.

Например, рост челюстных костей может стимулироваться даже у взрослых, становясь причиной того, что подбородок и нижние зубы начинают выдаваться вперед; сходным образом утолщение костей черепа приводит к разрастанию надбровных дуг.

Если гормон роста добавлять непосредственно к хондроцитам (хрящевым клеткам), культивируемым in vitro вне организма, то невозможно обнаружить их пролиферацию и рост культуры костной (хрящевой) ткани. Если же ГР вводить животным in vivo, то можно наблюдать пролиферацию и рост тех же клеток, образующих хрящи и кости.

Оказалось, что под влиянием гормона роста в печени (а в незначительных количествах и в некоторых других тканях) образуются мелкие своеобразные белки, названные соматомединами, которые могут стимулировать все проявления роста костей. Во многом воздействие соматомедина подобно воздействию инсулина на процессы роста, поэтому соматомедины еще называют инсулиноподобными факторами роста (ИФР).

Были выделены четыре соматомедина. В дальнейшем, однако, оказалось, что наиболее важным из них является соматомедин С (также называемый ИФР-I). Молекулярная масса соматомедина С составляет около 7500, его концентрация в крови напрямую связана со скоростью секреции гормона роста.

Итак, регуляция роста костей осуществляется гормонами — гормоном роста (соматотропином), гормонами щитовидной и половых желез, а также соматомединами или инсулиноподобными факторами роста (ИФР), один из которых (ИПФ-1) образуется в печени под влиянием гормона роста, а другой (ИПФ-2) производится самими хондроцитами хрящевой зоны роста.

При этом гормон роста способствует образованию чувствительных к ИПФ-1 хондроцитов из клеток-предшественников, а в дальнейшем под влиянием ИПФ-1 происходит пролиферация хондроцитов и образование гипертрофированных клеток, уже способных к оссификации (окостенению).

Рост и дифференцировку остеобластов стимулирует и гормон кальцитриол, основная функция которого заключается в регуляции процессов минерализации.Главным источником факторов роста кости является большая семья ее со­ставляющих. Од­ним из них является бычий морфогенетический протеин (BMP).

Под влиянием BMP происходит активация хемотаксиса, подавляется активность остеокластических процессов в кости, восстанавливается кровоснабжение и увеличивается количество остеобластных клеток, происходит регуляция костеобразующих клеток, увеличивается синтез костных матриц.

BMP регулиру­ет функцию различных типов коллаге­на и непосредственно усиливает синтез коллагена I типа. Все эти многофактор­ные и взаимосвязанные процессы ведут к построению кости и ее перестройке. По периметру имплантата под влиянием BMP более активно фор­мируется новая костная ткань.

плазма, обогащенная тромбоцитами (PRP), также входит в качестве составляющей в большую семью тромбоцитарных факторов роста (TGF). PRP способствует образованию мезенхимальных клеток, усилению их хе­мотаксиса и остеогенеза.

Восстановле­ние кровоснабжения ведет к актива­ции остеобластных клеток и построе­нию костной матрицы с последующим ремоделированием новообразованной кости. Таким образом, установлено, что под влиянием PRP происходит уси­ление роста новых тканей, прежде все­го остеоиндуктивных клеточных эле­ментов. R. Marx и соавт.

указы­вают на увеличение кости в 2×104 раз под влиянием PRP. Одновременно уста­новлено, что под влиянием PRP про­исходит не только усиление и ускоре­ние роста кости, но и улучшение ее ка­чества. Во всех исследованных образ­цах новообразованная ткань представ­ляла собой более зрелую и плотную кость, чем в группах сравнения без PRP.

Стимуляция остеогенеза возникает под влиянием “Pep-Gen Р-15”, который также является остеоиндуктивным мате­риалом. “Pep-Gen Р-15” стимулирует остеобластные клетки, прародитель­ские остеоциты, ведет к более активно­му росту костной матрицы, ремоделированию кости и ее минерализации.

В самой костной ткани есть ряд остеогеннных белков, способных индуцировать остеогенез (образование и рост кости). Остеогенная активность кости передается через протеиноподобный компонент матрикса, названный костными морфогенетическими белками – КМБ.

КМБ представляют собой низкомолекулярные растворимые трансмембранные гликопротеины, существующие в виде димеров, связанных между собой дисульфидными связями. В 1 кг костной ткани содержится примерно 1-2 мг  КМБ, т.е. очень мало. Искусственно был получен рекомбинантный человеческий костный морфогенетический белок  – 2 ( рчКМБ  – 2). РчКМБ – 2 представляет собой остеоиндуктивный фактор, который играет основную роль в процессе роста и регенерации костной ткани. В настоящее время КМБ и факторы роста применяются в некоторых странах в клинической практике. Сейчас в мире биопродукты с применением рекомбинантных белков КМБ – 2 и КМБ -7 производят лишь две зарубежные компании – Medtronic Biologics (ее препарат разрешен к применению с 2002 г.) и Stryker Biotech (ее препарат одобрен FDA в 2001 г.). В России эти препараты не представлены.

Источник: http://kineziolog.su/content/rost-kosti

Лечение Костей
Добавить комментарий